Page 237 - Compact Numerical Methods For Computers
P. 237

Left-overs                            225

                       TABLE 18.3. Solutions found for Z Hassan problem via Marquardt-type algorithm using numerical
                       approximation of the Jacobian and elimination of one parameter via equation (18.14). The values in
                       italics are for the eliminated parameter. All calculations run in BASIC on a Data General NOVA in
                                                  23-bit binary arithmetic.

                                                                                   Elimi- Sum of
                                                                                    nated squarest
                          b 1     b 2       b 3         b 4         b 5      b 6
                       -6·58771 0·910573 1·58847E-2 -2·54972E-2 -46·1524  74·0813   b 3  706·745
                                                                                          (104)
                        80·6448 0·587883 0·155615    3·27508E-2   0·541558  0·113976  b 4  749·862
                                                                                          (170)
                        43·9342 0·76762  0·167034    0·026591   -59·629   -9·49263   b 5  606·163
                                                                                          (67)
                        46·0481  0·757074 0·167033   2·76222E-2  -58·976  -9·75284   b 6  606·127
                                                                                          (67)
                       With analytic derivatives
                        45·3623  0·760703 0·167029   2·72248E-2  -59·1436  -9·64008  b 6  606·106
                                                                                          (65)
                       Penalty method; analytic derivatives: initial w = 100
                        44·9836  0·761652 0·165848   2·67492E-2  -58·9751  -8·85664  -   604·923
                                                                                          (73)
                       Increase to w = 1E4
                        45·353  0·760732 0·167005    2·72233E-2  -59·1574  -9·63664  -   606·097
                                                                                         (+48)
                       Increase to w = 1E6
                        45·3508 0·760759 0·167023    2·72204E-2  -59·1504  -9·63989  -  606·108
                                                                                         (+22)

                      † Figures in brackets below each sum of squares denote total number of equivalent function
                      evaluations (= (n+1) *(number of Jacobian calculations) + (number of function calculations)) to con-
                      vergence.

                       function a very large value whenever one or more of the constraints is violated. In
                       this last approach it has been reported that the simplex may tend to ‘collapse’ or
                       ‘flatten’ against the constraint. Swann discusses some of the devices used to
                       counteract this tendency in the book edited by Gill and Murray (1974). Dixon
                       (1972, chap 6) gives a discussion of various methods for constrained optimisation
                       with a particular mention of some of the convergence properties of the penalty
                       function techniques with respect to the weighting factors w and W.
                             TABLE 18.4. Results of solution of problem (18.24)-( 18.26) by the Nelder-Mead
                                                       algorithm.

                                          Function  Number of evaluations
                               Weighting    value       to converge      b 1      b 2
                             10           -5·35397         113         1·46161  0·40779
                             1E4          -5·35136         167         1·45933  0·40558
                             Set function
                             very large   -5·35135         121         1·45924  0·405569

                             Calculations performed on a Data General NOVA in 23-bit binary arithmetic.
   232   233   234   235   236   237   238   239   240   241   242