Page 232 - Compact Numerical Methods For Computers
P. 232

-5
 TABLE  18.1. Derivative approximations computed by formula (18.4) on a Data General NOVA. (Extended BASIC  system. Machine precision = 16 .)
 log(b)  exp(b)                                 tan(b)

 h  b = 0·001  b = 1  b = 100  b = –10  b = 0·001  b = l  b = 100  b = 0  b = l  b = l·57  b = –1.57

 1  6·90876  0·693147  0·95064E–3  7·80101E–5  1·72  4·67077  4·6188E43  1·55741  –3·74245  –1256·61  1255·32
 0·0625  66·4166  0·969993  9·99451E–3  4·68483E–5  1·03294  2·80502  2·7737H343  1·0013  3·80045  –20354·4  19843
 3·90625E–3  407·171  0·998032  1·00098E–2  4·54858E–5  1·00293  2·72363  2·69068E43  1  3·44702  –403844  267094
 2·44141E–4  894·754  0·999756  1·17188E–2  4·52995E–5  1  2·71875  2·67435E43  0·999999  3·42578  2·2655E6  1·2074E6
 1·52588E–5  992·437  1  0·0625  4·3869E–5  1  2·75  1·81193E43  0·999999 3·5  1·57835E6  1·59459E6
 9·53674E–7  1000  1  0  3·05176E–5  1  2  0  0·999999† 5  1·24006E6  2·47322E6
 1·93024E–6  999·012†  0·988142†
 9·77516E–4  0·999512†  2·72†          3·43317†
 9·76572E–2  9·9999E–3†  2·82359E43†
 9·76658E–3  4·56229E–5†
 1·53416E–3                                     –1·70216E6† 539026†
 Analytic
 derivative‡  1000  1  0·01  4·54E–5  1.001  2.71828 2·68805E43 1  3.42552  1·57744E6  1·57744E6

 † h computed by formula (18.5).
 ‡ The analytic derivative reported has been evaluated on the NOVA system and maybe in error to the extent that the special function routines of this system
 are faulty.
   227   228   229   230   231   232   233   234   235   236   237