Page 263 - Compact Numerical Methods For Computers
P. 263

250               Compact numerical methods for computers

                             TABLE 19.3. (a) Minimal and (b) maximal eigensolutions of Ax = eBx for A = Moler matrix, B = Frank
                                                           matrix (order 10).

                                                   Algorithm 10  Algorithm 15  Section 19.3  Algorithm 25
                             (a) Minimal eigensolution
                             Shift                  0           -            0            -
                             Eigenvalue             2·1458E-6   2·53754E-6   2 · 1 4 5 5 2 E - 6  -
                             Iterations or sweeps   4           7            3            -
                             Matrix products        -           -            23           26
                             Rayleigh quotient      - -         _-           2·1455E-6    2·14512E-6
                             Eigenvector:           0·433017   -0·433015     0·433017     0·433017
                                                    0·21651    -0·216509     0·21651      0·21651
                                                    0·108258   -0·108257     0·108257     0·108257
                                                    5·41338E-2  -5·41331E-2  5·41337E-2   5·41337E-2
                                                    2·70768E-2  -2·70767E-2  2·70768E-2   2·70768E-2
                                                    1·35582E-2  -1·35583E-2  1·35583E-2   1·35582E-2
                                                    6·81877E-3  -6·81877E-3  6·81877E-3   6·81879E-3
                                                    3·48868E-3  -3·48891E-3  3·48866E-3   3·48869E-3
                                                    1·90292E-3  -1·90299E-3  1·9029E-3    1·90291E-3
                                                    1·26861E-3  -1·26864E-3  1·26858E-3   1·26859E-3
                             Maximum residual       2 · 1 7 9 2 9 E - 7  < 8 · 7 7 3 8 E - 5  -  -
                                            T
                             Error sum of squares r r  -        -            2·0558E-13   4·62709E-11
                                         T
                             Gradient norm 2  g g  -            -                         9·62214E-15
                             (b) Maximal eigensolution
                             Shift                  8·8         -            8·8          -
                             Eigenvalue             8·81652     8·81644      8·8165
                             Iterations or sweeps   (see notes)  7           16           -
                             Matrix products       -            -            166         96
                             Rayleigh quotient     -            -                        8·81651
                             Eigenvector:          0·217765    -0·217764    0·219309     0·219343
                                                  -0·459921     0·459918    -0·462607    -0·462759
                                                   0·659884    -0·659877    0·662815     0·663062
                                                  -0·799308     0·799302    -0·802111    -0·801759
                                                   0·865401    -0·865396    0·867203     0·866363
                                                  -0·852101     0·8521      -0·85142     -0·851188
                                                   0·760628    -0·760632     0·757186    0·757946
                                                  -0·599375     0·599376    -0·594834    -0·595627
                                                   0·383132    -0·383132    0·379815     0·379727
                                                  -0·131739     0·131739    -0·130648    -0·130327
                             Maximum residual      7 · 6 2 9 3 9 E - 6  < 8 · 7 7 3 8 E - 5  -  -
                                            T
                             Error sum of squares r r  -        -            4·9575E-6    5·73166E-3
                                       2
                                         T
                             Gradient norm  g g    -            -            -            5·82802E-9
                             (v) Different measures of convergence and different tolerances have been used in
                             the computations, which were all performed on a Data General NOVA in
                             23-bit binary arithmetic. That these measures are different is due to the various
                             operating characteristics of the programs involved.
   258   259   260   261   262   263   264   265   266   267   268