Page 4 - Compact Numerical Methods For Computers
P. 4

CONTENTS




                      Preface to the Second Edition                                         ix
                      Preface to the First Edition                                          xi

                       1. A STARTING POINT                                                  1
                          1.1. Purpose and scope                                            1
                          1.2. Machine characteristics                                      3
                          1.3. Sources of programs                                          9
                          1.4. Programming languages used and structured programming        11
                          1.5. Choice of algorithms                                         13
                          1.6. A method for expressing algorithms                           15
                          1.7. General notation                                             17
                          1.8. Software engineering issues                                  17

                       2. FORMAL PROBLEMS IN LINEAR ALGEBRA                                 19
                          2.1. Introduction                                                 19
                          2.2. Simultaneous linear equations                                19
                          2.3. The linear least-squares problem                             21
                          2.4. The inverse and generalised inverse of a matrix              24
                          2.5. Decompositions of a matrix                                   26
                          2.6. The matrix eigenvalue problem                                28

                       3. THE SINGULAR-VALUE DECOMPOSITION AND ITS USE
                          TO SOLVE LEAST-SQUARES PROBLEMS                                   30
                          3.1. Introduction                                                 30
                          3.2. A singular-value decomposition algorithm                     31
                          3.3. Orthogonalisation by plane rotations                         32
                          3.4. A fine point                                                 35
                          3.5. An alternative implementation of the singular-value decomposi-
                              tion                                                          38
                          3.6. Using the singular-value decomposition to solve least-squares
                              problems                                                      40

                       4. HANDLING LARGER PROBLEMS                                          49
                          4.1. Introduction                                                 4 9
                          4.2. The Givens’ reduction                                        49
                          4.3. Extension to a singular-value decomposition                  54
                          4.4. Some labour-saving devices                                   54
                          4.5. Related calculations                                         63
                       5. SOME COMMENTS ON THE FORMATION OF THE CROSS-
                                                 T
                          PRODUCTS MATRIX A A                                               66
                                                         v
   1   2   3   4   5   6   7   8   9