Page 5 - Compact Numerical Methods For Computers
P. 5

vi              Compact numerical methods for computers
                             6. LINEAR EQUATIONS-A DIRECT APPROACH                                72
                                6.1. Introduction                                                 72
                                6.2. Gauss elimination                                            72
                                6.3. Variations on the theme of Gauss elimination                 80
                                6.4. Complex systems of equations                                 82
                                6.5. Methods for special matrices                                 83

                             7. THE CHOLESKI DECOMPOSITION                                        84
                                7.1. The Choleski decomposition                                   84
                                7.2. Extension of the Choleski decomposition to non-negative defi-
                                    nite matrices                                                 86
                                7.3. Some organisational details                                  90


                              8. THE SYMMETRIC POSITIVE DEFINITE MATRIX AGAIN                     94
                                8.1. The Gauss-Jordan reduction                                   94
                                8.2. The Gauss-Jordan algorithm for the inverse of a symmetric
                                     positive definite matrix                                     97

                             9. THE ALGEBRAIC EIGENVALUE PROBLEM                                 102
                                9.1. Introduction                                                102
                                9.2. The power method and inverse iteration                      102
                                9.3. Some notes on the behaviour of inverse iteration            108
                                9.4. Eigensolutions of non-symmetric and complex matrices        110

                             10. REAL SYMMETRIC MATRICES                                         119
                                10.1. The eigensolutions of a real symmetric matrix              119
                                10.2. Extension to matrices which are not positive definite      121
                                10.3. The Jacobi algorithm for the eigensolutions of a real symmetric
                                      matrix                                                     126
                                10.4. Organisation of the Jacobi algorithm                       128
                                10.5. A brief comparison of methods for the eigenproblem of a real
                                      symmetric matrix                                           133

                             11. THE GENERALISED SYMMETRIC MATRIX EIGENVALUE
                                PROBLEM                                                          135

                             12. OPTIMISATION AND NONLINEAR EQUATIONS                            142
                                12.1. Formal problems in unconstrained optimisation and nonlinear
                                      equations                                                  142
                                12.2. Difficulties encountered in the solution of optimisation and
                                      nonlinear-equation problems                                146
                             13. ONE-DIMENSIONAL PROBLEMS                                        148
                                13.1. Introduction                                               148
                                13.2. The linear search problem                                  148
                                13.3. Real roots of functions of one variable                    160
   1   2   3   4   5   6   7   8   9   10