Page 6 - Compact Numerical Methods For Computers
P. 6

Contents                             vii
                     14. DIRECT SEARCH METHODS                                           168
                         14.1. The Nelder-Mead simplex search for the minimum of a
                               function of several parameters                             168
                         14.2. Possible modifications of the Nelder-Mead algorithm        172
                         14.3. An axial search procedure                                  178
                         14.4. Other direct search methods                                182
                      15. DESCENT TO A MINIMUM I: VARIABLE METRIC
                         ALGORITHMS                                                       186
                         15.1. Descent methods for minimisation                           186
                         15.2. Variable metric algorithms                                 187
                         15.3. A choice of strategies                                     190
                      16. DESCENT TO A MINIMUM II: CONJUGATE GRADIENTS                    197
                         16.1. Conjugate gradients methods                                197
                         16.2. A particular conjugate gradients algorithm                 198
                      17. MINIMISING A NONLINEAR SUM OF SQUARES                           207
                         17.1. Introduction                                               207
                         17.2. Two methods                                                208
                         17.3. Hartley’s modification                                     210
                         17.4. Marquardt’s method                                         211
                         17.5. Critique and evaluation                                    212
                         17.6. Related methods                                            215
                      18. LEFT-OVERS                                                      218
                         18.1. Introduction                                               218
                          18.2. Numerical approximation of derivatives                    218
                          18.3. Constrained optimisation                                  221
                          18.4. A comparison of function minimisation and nonlinear least-
                               squares methods                                            226

                      19. THE CONJUGATE GRADIENTS METHOD APPLIED TO
                          PROBLEMS IN LINEAR ALGEBRA                                      234
                          19.1. Introduction                                              234
                          19.2. Solution of linear equations and least-squares problems by
                               conjugate gradients                                        235
                          19.3. Inverse iteration by algorithm 24                         241
                          19.4. Eigensolutions by minimising the Rayleigh quotient        243
                      APPENDICES                                                          253
                          1. Nine test matrices                                           253
                         2. List of algorithms                                            255
                          3. List of examples                                             256
                          4. Files on the software diskette                               258

                      BIBLIOGRAPHY                                                        263

                      INDEX                                                               271
   1   2   3   4   5   6   7   8   9   10   11