Page 49 - Complementarity and Variational Inequalities in Electronics
P. 49

The Variational Inequality Problem Chapter | 3 39


                           We set

                                                           (x) = ϕ  ∗  (−x)
                                               (∀x ∈ R) : θ D 3
                                                                 D 3
                                                                        is finite and continuous.
                           and assume the existence of a point x 0 ∈ R at which θ D 3
                           Then

                                                         (x) =−∂ϕ  ∗  (−x).
                                             (∀x ∈ R) : ∂θ D 3
                                                                  D 3
                           Therefore
                                                                    (−V 3 ).
                                            V 3 ∈ ∂ϕ D 1  (i 3 ) ⇔ i 3 ∈−∂θ D 3
                           We set

                                         4
                                  (∀x ∈ R ) :  (x) = ϕ D 4  (x 1 ) + θ D 3  (x 2 ) + ϕ D 1  (x 3 ) + ϕ D 2 (x 4 ).

                           This results in that the dynamical behavior of the circuit in Fig. 3.3 is described
                           by the system
                                                                   ⎛       ⎞
                                                            B
                                                                       i 4


                                         dV    −1        1    1    ⎜       ⎟
                                                                   ⎜ −V 3 ⎟
                                            =      V +     0     0 ⎜       ⎟,          (3.9)
                                         dt    RC 1     C 1  C 1   ⎝   i 1  ⎠
                                                                       i 2
                                y        C                N            y L        F

                            ⎛      ⎞   ⎛   ⎞     ⎛                ⎞⎛       ⎞   ⎛     ⎞
                                         1          0  −10     0                  0
                              −V 4                                     i 4
                            ⎜      ⎟   ⎜   ⎟     ⎜                ⎟⎜       ⎟   ⎜     ⎟
                               i 3               ⎜ 1    0
                                                                                     ⎟u,
                            ⎜      ⎟   ⎜ 0 ⎟               1 −1 ⎟⎜ −V 3 ⎟      ⎜ 0 ⎟
                            ⎜      ⎟ = ⎜   ⎟V + ⎜                 ⎟⎜       ⎟+⎜
                                                 ⎝ 0   −10
                            ⎝ −V 1 ⎠   ⎝ 1 ⎠                   0 ⎠⎝    i 1  ⎠  ⎝ −1 ⎠
                              −V 2       0          0   1  0   0       i 2        1
                                                                                      (3.10)
                           and
                                                     y ∈−∂ (y L ).                    (3.11)
                           Remark 10. The relation y ∈−∂ (y L ) is equivalent to

                                                         ⎛            ⎞
                                              ⎛     ⎞
                                                 y 1        ∂ϕ D 4 (y L,1 )
                                                         ⎜            ⎟
                                                 y 2     ⎜ ∂θ D 3  (y L,2 ) ⎟
                                              ⎜     ⎟
                                              ⎜     ⎟
                                                      ∈−⎜             ⎟
                                                 y 3     ⎝ ∂ϕ D 1  (y L,3 ) ⎠
                                              ⎝     ⎠
                                                 y 4            (y L,4 )
                                                            ∂ϕ D 2
   44   45   46   47   48   49   50   51   52   53   54