Page 92 - Complementarity and Variational Inequalities in Electronics
P. 92

A Variational Inequality Theory Chapter | 4 83


                           Let e ∈ D(  ∞ ). Then from (4.29), e ∈ D( ) ∞ , and thus u i + e ∈ D( ).We
                           may set v = u i + e in (4.38) to get

                                     (1 − t i )u i + t i (Mu i + q),e +  (u i + e) −  (u i ) ≥ 0,

                           and thus
                                         (1 − t i )u i ,e + t i (Mu i + q),e +   ∞ (e) ≥ 0.

                           Note that   ∞ (e) < +∞ since e ∈ D(  ∞ ), and we may therefore divide this
                           last relation by ||u i || to get

                                                            q        1
                                     (1 − t i )z i ,e + t i Mz i + t i  ,e +    ∞ (e) ≥ 0.
                                                           ||u i ||  ||u i ||
                           Taking the limit as i →+∞, we get  (1 − t)z + tMz,e ≥ 0. This holds for any
                           e ∈ D(  ∞ ), and thus
                                                                     ∗
                                               (1 − t)z + tMz ∈ (D(  ∞ )) .           (4.40)
                           Setting now v = x 0 in (4.38), we obtain

                                           2
                                 (1 − t i )||u i || + t i  Mu i ,u i  ≤ (1 − t i )u i ,x 0  + t i Mu i ,x 0
                                                         + t i q,x 0 − u i  +  (x 0 ) −  (u i ).

                           The function   is proper, convex, and lower semicontinuous, and thus (see e.g.
                           Theorem 1.1.11 in [46]) there exists a ≥ 0 and b ∈ R such that
                                                                      n
                                                (x) ≥−a||x|| + b, ∀x ∈ R .

                           Thus
                                         2
                               (1 − t i )||u i || + t i  Mu i ,u i  ≤ a||u i || − b + (1 − t i )u i ,x 0
                                                       + t i Mu i ,x 0  + t i q,x 0 − u i  +  (x 0 ).
                                                       2
                           Dividing this last relation by ||u i || , we get
                                                            a      b            x 0
                                            2
                                  (1 − t i )||z i || + t i  Mz i ,z i  ≤  −  + t i Mz i ,
                                                          ||u i ||  ||u i || 2  ||u i ||
                                                 x 0       q    x 0        (x 0 )
                                    + (1 − t i ) z i ,   + t i  ,  − z i  +    .
                                                ||u i ||  ||u i || ||u i ||  ||u i || 2
                           Taking the limit as i →+∞, we get
                                                  (1 − t)z + tMz,z ≤ 0.
   87   88   89   90   91   92   93   94   95   96   97