Page 64 - Computational Colour Science Using MATLAB
P. 64

CIELAB AND CIELUV COLOUR SPACE                     51

                           1
                  h ab ¼ tan ðb*=a*Þð180=pÞ,                                     ð5.3Þ
             where the term 180/p is necessary to convert the output of the inverse tan
             function from radians to degrees. The polar coordinates are useful since the
             differences in the chroma term C* can be correlated with differences in perceived
                                          ab
             colourfulness, and differences in the hue term h   can be correlated with
                                                            ab
             differences in perceived hue. Equations (5.2) and (5.3) can easily be inverted
             (Green, 2002a),
                  a* ¼ C* cosðh ab p=180Þ,                                       ð5.4Þ


                  b* ¼ C* sinðh ab p=180Þ.                                       ð5.5Þ

             If the tristimulus values of the neutral are known, then it is possible to invert
             Equations (5.1),

                                3
                  Y ¼ Y n fðY=Y n Þ ,              if fðY=Y n Þ 4 ð0:008856Þ 1=3 ,
                  Y ¼ Y n ðfðY=Y n Þ  16=116Þ=7.787Þ,  if fðY=Y n Þ4 ð0:008856Þ 1=3 ,
                                3
                  X ¼ X n fðX=X n Þ ,              if fðX=X n Þ 4 ð0:008856Þ 1=3 ,
                  X ¼ X n ðfðX=X n Þ  16=116Þ=7.787Þ,  if fðX=X n Þ4 ð0:008856Þ 1=3 ,  ð5.6Þ
                                3
                  Z ¼ Z n fðZ=Z n Þ ,              if fðZ=Z n Þ 4 ð0:008856Þ 1=3 ,
                                                                        1=3
                  Z ¼ Z n ðfðZ=Z n Þ  16=116Þ=7.787Þ,if fðZ=Z n Þ4 ð0:008856Þ  ,
             where

                  fðY=Y n Þ¼ ðL* þ 16Þ=116,

                  fðX=X n Þ¼ a*=500 þ fðY=Y n Þ
             and
                  fðZ=Z n Þ¼ fðY=Y n Þ  b*=200.

             The formulae for computing CIELUV coordinates are given as Equations (5.7),
                                 1=3
                  L* ¼ 116ðY=Y n Þ    16,  if Y=Y n 4 0:008856,
                  L* ¼ 903:3ðY=Y n Þ,     if Y=Y n 4 0:008856,

                                                                                 ð5.7Þ
                  u* ¼ 13L*ðu   u n Þ,
                                  0
                              0
                   v* ¼ 13L*ðv   v n Þ,
                                 0
                             0
             where u and v are the coordinates of the so-called uniform chromaticity space,
                    0
                          0
             CIE 1976 UCS, which is a linear transform of the more usual xy chromaticity
             space,
   59   60   61   62   63   64   65   66   67   68   69