Page 219 - Computational Fluid Dynamics for Engineers
P. 219

Problems                                                              207


         Table  P6.1.  Coordinates  of the  NACA  65 3-018  airfoil.

         x/c     y/c        x/c    y/c
         0.005   0.01337    0.45   0.08901
         0.0075   0.01608   0.50   0.08568
         0.0125   0.02014   0.55   0.08008
         0.0250   0.02751   0.60   0.07267
         0.050   0.03866    0.65   0.06395
         0.075   0.04733    0.70   0.05426
         0.10    0.05457    0.75   0.04396
         0.15    0.06606    0.80   0.03338
         0.20    0.07476    0.85   0.02295
         0.25    0.08129    0.90   0.01319
         0.30    0.08595    0.95   0.00490
         0.35    0.08886    1.0   0
         0.40    0.08999


           1.6
           1.2
                               /   \
           0.8



         V  0.0
         3  -0.4
         p              /
         "5  -0.8

           -1.2   ^    /
           -1.6

            -32  -24  - 1 6 - 8  0  8  16  24  Fig.  P6.2.  Experimental  data  for  the
                 Section angle of attack  Oo, deg.   NACA  65 3-018  airfoil.




         layer  over  a  considerable  portion  of its  area. The  late transition  is  accomplished
         by  designing  the  airfoil  so that  the  pressure  gradient  is  favorable  over  a  larger
         area.  A  favorable  pressure  gradient  tends  to  delay  transition.  The  main  geo-
         metrical  difference  that  accounts  for  the  change  in  the  pressure  distribution  is
         a  movement  rearward  of the  point  of maximum  thickness.
         (a)  Repeat  Problem  6.4  for  this  airfoil  and  compare  your  calculated  results
         with  the  experimental  data  (Fig.  P6.2)  obtained  for  a  chord  Reynolds  number
                 6
         of  6 x  10 .
         (b)  Discuss  the  difference  in  results  for  both  airfoils.
   214   215   216   217   218   219   220   221   222   223   224