Page 367 - Computational Fluid Dynamics for Engineers
P. 367

358                                   12.  Compressible  Navier-Stokes  Equations



                                                          2
                              yn+1  =  yn  + <L Vn  +  Q(At )
                                           At
         and,  with  the  chain  rule  and  noting that  V™  is a  function  of  Q  and  Q x

                          yn+1  =  yn  +  Atf
                                            ~~dQ~~dt  +   dQ x~dt
                                                                           (12.4.7)


         where
                                                                           (12.4.8)

         Analogous  to  Eq.  (5.4.7b),  we can  write
                            Ayn  =  pn AQn  +  Rn QU  +  0(^2)
                                               A
         or
                             AV?  =  (P n  -  K)AQ n  +  (RAQ)x           (12.4.9)
         Similarly,  noting that  AW?  is a  function  of  Q  and  Q y,  we can  write

                            AW?   =  (M n  -  N£)AQ n  +  (NAQ)%         (12.4.10)


                                                                         (12.4.11)
                                   \8Q>               \8QJ
                  1
         Since  AV^  and  AW™ are  functions  of  Q,  Q x  and  Q y,  the  terms

                                    -AV^         -AW?

         in  Eq.  (12.4.6)  represent  mixed  derivatives  and  are  approximated  by

                                               1         2
                              ^-AV£   = dx         + 0(At )             (12.4.12a)
                              dx
                                         -^AV?-
                                              1 1          2
                              ^-AW?   =  —AWl '    +   0(At )           (12.4.12b)
                              dy         dy
         Equations  (5.4.7a),  (12.4.2),  (12.4.9),  (12.4.10),  and  (12.4.12)  are  now  substi-
         tuted  into  Eq.  (12.4.1)  to  yield
                 6 At   d       P-R x
                           A-
           I    1 +  £  I dx      Re      Re  Ox
              d  (     M-JV,      1  d
                                                r
                             y               AQ '
                                 Redy
              6 At   d_ (AY?- 1  \  ^  d^  (AW?- 1                       (12.4.13)
             1 + C  dx  \  Re     +  dy    Re
                 At    d    En  ,  V?  + V?\   9      n    W?  +  W 2 W
                l  + £[dx\ i         Re    J   dy   -F  +     Re
                        n l
              +  1 + ^  AQ ~
   362   363   364   365   366   367   368   369   370   371   372