Page 371 - Computational Fluid Dynamics for Engineers
P. 371

362                                   12.  Compressible  Navier-Stokes  Equations


                   dE    OF     1  (dE v   dF v
            / /    dx    dy  +  Re  \  dx +   dy  dxdy
              i ,3
               Vj + l/2  x i  +  l/2
                            dE    OF     1  (dE v   dF v
             • I I          dx    dy    Re  \  dx    dy    dxdy
              2 / 7 - 1 / 2 ^ - 1 / 2
                                            Xi+1/2
                 Vj +  l/2
                      E
                  j   ( i+i/2  ~  Ei_ 1/2)dy  -  j  (Fj+i/2  -  F j_ l/2)dx
                yj-1/2                     c  i - l / 2
                                                   x
                     /  yj+1/2                     i  +  l/2                \
                  1
                                                                          d
                                      E
               +        /  (^Wl/2   - vi-l/2)dy  +  /  (^j+1/2  _   F vj-l/2) 2
                 R^
                     Vi-1/2                       ^i-1/2                     /
                           E
            =  ~(Ei+i/2,j  - i-i/2,j)Ay  -  (Fij+x/2  -  F itj_ 1/2)Ax
                                 E                       _    F       x
               +  p ^  [(^m+l/2j  - vi-l/2j)Ay  +  (^zJ+1/2    viJ-l/2)^ \
                                                                         (12.5.2b)
         We then  obtain
               dQi 7
               - ^  ArZh/  =  -(E i+1/2J  -  Ei_ 1/2j)Ay  -  (F iJ+1/2  -  F^_ 1/2)Ax
                      E
                                 E
                      ( vi+i/2j  ~ vi-i/2j)Ay  +  (F vij +1/ 2  -  F vij_ 1/2)Ax\  (12.5.3)
               +  Re
         Dividing  both  sides  of  Eq.  (12.5.3)  by  Ax  Ay  results  in  a  system  of  ordinary
        differential  equations,  applicable  to the  interior  region  i?^j  including  the  region
         close to  the  boundaries.
                                     E
                  dQ       E i+l/2J  ~ i-l/2j  F iJ+l/2  ~  F iJ-l/2
                    1,3
                   dt             Ax                   Ay
                                                   E
                                      E
                                                                   E
                         E
                         ( v)i+1/2J  ~  ( v)i-l/2,j  ( v)i,j+l/2  -  ( v)ij-l/2
                  +  Re           Ax            +           Ay            (12.5.4)
        We  first  discuss  the  solution  for  the  interior  region  Q^  and  approximate  Eq.
         (12.5.4)  by
                                    E
                 dQ        E i+l,j  — i-lJ   Fjj  + i  —  Fjj-i
                    1,3
                   dt           2Ax              2Ay
                                                   F
                                                                  F
                                      E
                             i+l/2J  ~  ( v)i-l/2,j  ( v)ij+l/2  ~  ( v)iJ-l/2
                                                                          (12.5.5)
                  +  Re           Ax                        Ay
         The  elements  in  the  dissipation  terms  can  be  approximated  by  the  following
        central  differences.
                                ^i+l,j   ^ij
                    [u :  x)i+l/2J            {Ux)i-1/2J  -    ^
                              ~      Ax
   366   367   368   369   370   371   372   373   374   375   376