Page 372 - Computational Fluid Dynamics for Engineers
P. 372

12.5  Finite Volume Method                                            363


                       L        _  u
                        i+l/2,j+l  i+l/2,j-l  _  Ui+ij+i  +  Uij+i  -  Uj+ij-i  -  Uij-i
          (%)i+l/2,j —
                               2Ay                            4Ay
                                  u
                      u i-l/2,j+l  - i-l/2,j-l  _  Uij+i  +  Ui-ij  + i  -  Uij-i  -  Ui-ij-i
          u
          ( y)i-l/2j  =
                               2Ay                            4Ay
                     l                            u
                      y)i,j+i/2  ~   ^          K y)i,j-i/2
                                                               Ax
          /  x      _  ^ + l , j + l / 2  ~  ^i-lJ+1/2  _  ^ i + l j + l  +  ^ i + l j  ~  ^2-l,j+l  ~  ^z-l,j


                                  u
          /  x      _  u i+lj-l/2  ~ i-l,j-l/2  _  Ui+ij  +  U i + i j - i  -  Ui-ij  -  TXz—l,j —1
          ^ ^ « - V 2  "       ^ x          "                 lA~x
         There  are  several  methods  to  solve Eq.  (12.5.4), and  here  we use  a  fourth-order
         Runge-Kutta  scheme.  For  a  time  dependent  problem


                                           =  R(Q)                        (12.5.6)
                                        dt
         the  fourth-order  Runge-Kutta  scheme  is  given  by  the  following  four  steps


              Q(2)  =  Qn  +  ^ AtRW  =Qn  +  ^AtR(Q^)

              Q(3)  =  Qn  +  l AtR(2)  =  Qn  +  ^AtR(Q^)
                                                                          (12.5.7)
                4
              Q( )  =  Q n  +  AtRW  =Q n  +  AtR(QW)
             Qn+1  =Qn +   AL( R(1)  +  2ij(2)  +  2ij(3)  +  ijW)
                       n
                                                                   4
                                             (2
                                                         (3)
                                  {1)
                   =  Q  +  f  [R(Q )  + 2i?(g ') + 2i?(Q ) + i?(Q< ))
        It  proves  necessary  to  augment  the  finite  volume  scheme  by  the  addition  of
         artificial  dissipative  terms.  Therefore,  Eq.  (12.5.5)  is  replaced  by  the  equation
                 dQ i,J  _  E i+l/2,j  -  E i-l/2,j  _  Fjj+1/2  -  Fj,j-l/2
                   dt             Ax                   Ay
                                                   E
                                                                  E
                     1   ( v)i+l/2,j  — ( v)i-l/2,j  { v)i,j+l/2  -  ( v)i,j-l/2
                                      E
                         E
                  +                                                       (12.5.8)
                    Re"           Ax                        Ay
                  +  DQij                                                 (12.5.9)
         where
                                                                         (12.5.10)
         Here  D xQij  and  D yQij  are  defined  by

              D xQij  =  d i+i/ 2j  —  d i_ 1/ 2j,  DyQij  =  dij+i/2  — d ij_ 1/ 2  (12.5.11)
   367   368   369   370   371   372   373   374   375   376   377