Page 94 - Computational Fluid Dynamics for Engineers
P. 94

Problems                                                               79



         2-19.  Using  the  transformation

                                                                         (P2.19.1)
                                        r/ = r/(r,  0)

         Show  that  the  Laplace  equation  in  polar  coordinates
                                                        2
                                        2
                                       9 u   Idu     1 <9 t
                                 2
                                       Q r2  r g r  r2 QQ2
         can  be  expressed  in  the  following  form


              dl? \^    r*)    drj*  \' r  '  r*)  '  d^d V ^  l r  r* J   ( p 2 - 1 9 - 3 )
                                                        \
                   ,du(      ,ir,iee\,du(            rj r  r]ee\  n


         in  the  computational  plane.

         2-20.  Determine  the  metric  coefficients  in  Eq.  (P2.19.3)  for  £ and  rj defined  by


                                              1                          (P2.20.1)
                                          rj=  -
                                              r
         and  show that  the  Laplace  equation,  Eq.  (P2.19.3)  can  be  written as

                                    2
                                                  2
                                  2d u  + +     d u                     (P2202)
                                           du
                                 "V ^ **=°                                 - -
         2-21.  For a perfect  gas,  show  that

                                 p=(T-l)g\Et-YJ                          (P2.21.1)


         Hint:  Note  that
                                     -    R
                                   Cy  —    — ,  C  —  C v  1
                                        7 - 1

         2-22.  Show that,  with  mass transfer  (QV W),  the momentum  integral  integration,
         Eq.  (2.4.36),  can  be  written  as


                              ±{ul9)  + u ev w + 6*u ep-  = ^             (P2.22.1)
                              ax                    ax    Q
   89   90   91   92   93   94   95   96   97   98   99