Page 179 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 179

168   Computational Modeling in Biomedical Engineering and Medical Physics


                Jensen, P.D., Meaney, P.M., Epstien, N.R., Paulsen, K.D., 2012. Cole Cole parameter characterization
                   of urea and potassium for improving dialysis treatment assessment. IEEE Antennas Wireless Propag.
                   Lett. 11, 1598 1601.
                Kassanos, P., Constantinou, L., Triantis, I.F., Demosthenous, A., 2014. An integrated analog readout for
                   multi-frequency bioimpedance measurements. IEEE Sens. J. 14 (8), 2792 2800.
                Kriˇ zaj, D., 2018. Basics of numerical simulations of bioimpedance phenomena. Bioimpedance in
                   Biomedical Applications and Research. Springer International Publishing, pp. 101 116.
                Kubicek, W.G., Karnegis, J.N., Patterson, R.P., Witsoe, D.A., 1966. Development and evaluation of an
                   impedance cardiac output system. Aerospace Med. 37, 1208 1212.
                Kubicek, W.G., Karnegis, J.N., Patterson, R.P., Witsoe, D.A., 2006. Impedance cardiography as a nonin-
                   vasive method of monitoring cardiac function and other parameters of the cardiovascular system.
                   Ann. N Y Acad. Sci. 170 (2), 724 732.
                Kyle, U.G., Bosaeus, I., De Lorenzo, A.D., Deurenberg, P., Elia, M., Gómez, J.M., et al., 2004.
                   Bioelectrical impedance analysis. I. Review of principles and methods. Clin. Nutr. 23 (5), 1226 1243.
                Lee, W., Cho, S., 2015. Integrated all electrical pulse wave velocity and respiration sensors using bio-
                   impedance. IEEE J. Solid-State Circuits 50 (3), 776 785.
                López-Gómez, J.M., 2011. Evolution and applications of bioimpedance in managing chronic kidney dis-
                   ease. Nefrologia 31 (5), 537 544.
                Maceira, A.M., Prasad, S.K., Khan, M., Pennell, D.J., 2006. Reference right ventricular systolic and dia-
                   stolic function normalized to age, gender and body surface area from steady-state free precession car-
                   diovascular magnetic resonance. Eur. Heart J. 27, 2879 2888.
                Majumder, S., Mondal, T., Deen, M.J., 2019. A simple, low-cost and efficient gait analyzer for wearable
                   healthcare applications. IEEE Sens. J. 19 (6), 2320 2329.
                Malmivuo, J., Plonsey, R., 1995. Bioelectromagnetism. Principles and Applications of Biomagnetic
                   Fields. Oxford Press.
                Mellert, F., Winkler, K., Schneider, C., Dudykevych, T., Welz, A., Osypka, M., et al., 2011. Detection
                   of (reversible) myocardial ischemic injury by means of electrical bioimpedance. IEEE Trans. Biomed.
                   Eng. 58 (6), 1511 1518.
                Misiura, K.V., 2017. Specific features of hemodynamics in individuals with different body mass: correla-
                   tion with composition of the body and insulin resistance. Endokrynologia 22 (4), 315 325.
                Morega A.M., Dobre A.A., Morega M., 2010. Numerical simulation of magnetic drug targeting with
                   flow-structural interaction in an arterial branching region of interest. In: Proceedings of Comsol
                   Users Conference, Paris, France, pp. 17 19.
                Morega A.M., Dobre A.A., Morega M., 2012. Numerical simulation in electrical cardiometry. In:
                   Proceedings of13th International Conference on Optimization of Electrical and Electronic
                   Equipment (OPTIM), Brasov, Romania, pp. 1407 1412.
                Morega, A.M., Dobre, A.A., Morega, M., 2013. Blood flow indices assessment by electrocardiometry.
                   In: Ion, S., Popa, C. (Eds.), Topics of Mathematical Modeling of Life Sciences Problems.
                   MatrixRom, Bucharest, RO, pp. 43 66.
                Morega, A.M., Dobre, A.A., Morega, M., 2016. Electrical cardiometry simulation for the assessment of
                   circulatory parameters. Proc. Romanian Acad Ser. A 17 (3), 259 266.
                Morega, A.M., Dobre, A.A., Morega, M., 2018. The brachial electrical bioimpedance as a localized cardio-
                   vascular investigation technique. Rev. Roumaine Sci. Techn. Electrotech. Energ 63 (2), 162 171.
                Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., et al., 2005. 3-D numerical simu-
                   lation of blood flow through models of the human aorta. J. Biomech. Eng. 127, 767 775.
                Moskalenko, Y.E., Naumenko, A.I., 1959. Movement of the blood and changes in its electrical conduc-
                   tivity. Bull. Exp. Biol. Med. 47 (2), 211 215. Available from: https://link.springer.com/article/
                   10.1007/BF00788156.
                Nagel, L.W., 1975. SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memorandum No.
                   ERL M520. University of California, Berkeley.
                Nagel, L.W., Pederson, D.O., 1973. SPICE (Simulation Program with Integrated Circuit Emphasis),
                   Memorandum No. ERL M382. University of California, Berkeley.
   174   175   176   177   178   179   180   181   182   183   184