Page 180 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 180

Bioimpedance methods  169


                   Naranjo-Hernández, D., Reina-Tosina, J., Mart Min, M., 2019. Fundamentals, recent advances, and future chal-
                      lenges in bioimpedance devices for healthcare applications. Hindawi J. Sens. 2019, Article ID 9210258, 42.
                   Norozi, K., Beck, C., Osthaus, W.A., Wille, I., Wessel, A., Bertram, H., 2008. Electrical velocimetry for
                      measuring cardiac output in children with congenital heart disease. Br. J. Anaesth. 100 (1), 88 94.
                   Nyboer, J., Kreider, M., Hannapel, L., 1950. Electrical impedance plethysmography. A physical and phys-
                      iologic approach to peripheral vascular study. Circulation II, 811 821.
                   Osypka, M., 2009. An Introduction to Electrical Cardiometry. Electr. Cardiometryt, pp. 1 10,
                      ,https://osypka-asia.com/pdf/technique.pdf. (accessed Dec. 2019).
                   PalmSens Compact Electrochemical Interfaces, 2019. ,https://www.palmsens.com/. (accessed
                      Dec. 2019).
                   Piuzzi, E., Pisa, S., Pittella, E., Podesta, L., Sangiovanni, S., 2019. Low-cost and portable impedance
                      plethysmography system for the simultaneous detection of respiratory and heart activities. IEEE Sens.
                      J. 19 (7), 2735 2746.
                   Punj, R., Kumar, R., 2019. Technological aspects of WBANs for health monitoring: a comprehensive
                      review. Wireless Netw. 25 (3), 1125 1157.
                   Rapin,M.,Braun,F.,Adler,A.,Wacker,J., Frerichs, I., Vogt, B., et al., 2019. Wearable sensors for frequency-
                      multiplexed EIT and multilead ECG data acquisition. IEEE Trans. Biomed. Eng. 66 (3), 810 820.
                   Ro¸su-Hamzescu M., 2019. System for the analysis of the dynamics of biointerfaces, Doctoral Thesis, The
                      University of Bucharest, Bucharest.
                   Sathyaprabha, T.N., Pradhan, C., Rashmi, G., Thennarasu, K., Raju, T.R., 2008. Noninvasive cardiac
                      output measurement by transthoracic electrical bioimpedence: influence of age and gender. J. Clin.
                      Monit. Comput. 22 (6), 401 408.
                   Segen, J.C., 2005. Concise Dictionary of Modern Medicine. MacGraw-Hill Medical.
                   Shahcheraghi, N., Dwyer, H.A., Cheer, A.Y., Barakat, A.I., Rutaganira, T., 2002. Unsteady and three-
                      dimensional simulation of blood flow in the human aortic arch. Trans. ASME 124, 378 387.
                   Shimazu, H., Yamakoshi, K.I., Togawa, T., Fukuoka, M., Ito, H., 1982. Evaluation of the parallel con-
                      ductor theory for measuring human limb blood flow by electrical admittance plethysmography. IEEE
                      Trans. Biomed. Eng. BME-29 (1), 1 7.
                   Simpleware v. 4.2, Simpleware Ltd., UK, 2010.
                   Slicer v. 4.10, https://www.slicer.org. (accessed 2019).
                   Sramek, B.B., 1986. BoMed's Electrical Bioimpedance Technology for Thoracic Applications (NCCOM):
                      Status Report. BoMed Ltd, Irvine, pp. 19 21, May 1986 Update.
                              ˇ
                   Stevanovi´ c, P., S´ cepanovi´ c, R., Radovanovi´ c, D., Bajec, D., Perunovi´ c, R., Stojanovi´ c, D., et al., 2008.
                      Thoracic electrical bioimpedance theory and clinical possibilities in perioperative medicine. Signa
                      Vitae 3 (Suppl 1), 22 27. Available from: www.signavitae.com.
                   Taylor, C.A., Hughes, T.J.R., Zarins, C.K., 1998. Finite element modeling of three-dimensional pulsatile
                      flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Eng. 26, 975 987.
                   Tishchenko, M.I., 1973. Measurement of the stroke blood volume by an integral rheogram of the human
                      body. Fizio.l Zh. SSSR, Im. Sechenova I.M. 59 (8), 1216 1224 (in Russian).
                   Teixeira, V.S., Krautschneider, W., Montero-Rodriguez, J.J., 2018. Bioimpedance spectroscopy for char-
                      acterization of healthy and cancerous tissues. In: Proceedings of the 2018 IEEE International
                      Conference on Electrical Engineering and Photonics (EExPolytech), Saint Petersburg, Russia,
                      pp. 147 151, October 2018.
                   Truijen, J., van Lieshout, J.J., Wesselink, W.A., Westerhof, B.E., 2012. Noninvasive continuous hemody-
                      namic monitoring. J. Clin. Monit. Comput. 26 (4), 267 278.
                   Vedru, J., 1994. Electrical Impedance Methods for the Measurement of Stroke Volume in Man: State of
                      Art. Institute of General and Molecular Pathology Group of Biomedical Engineering, Veski 34,
                      EE2400 Tartu, Estonia.
                   VHP   Visible Human Project, U.S. National Library of Medicine, National Institutes of Health.
                      ,http://www.nlm.nih.gov/research/visible/visible_human.html. (accessed 2019).
                   Visual Human Project, U.S. National Library of Medicine, National Institutes of Health http://www.
                      nlm.nih.gov/research/visible/visible_human.html. Accessed 30 January 2015.
   175   176   177   178   179   180   181   182   183   184   185