Page 81 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 81
68 Computational Modeling in Biomedical Engineering and Medical Physics
Cheng, S.C., Huang, Y.M., 2003. A novel approach to diagnose diabetes based on the fractal characteris-
tics of retinal images. IEEE Trans. Inf. Technol. Biomed. 7 (3), 163 170.
Cohn, D.L., 1954. Optimal systems: I. The vascular system. Bull. Math. Biophys. 16, 59 74.
Cohn, D.L., 1955. Optimal systems: II. The vascular system. Bull. Math. Biophys. 17, 219 227.
Falconer, K.J., 1990. Fractal Geometry: Mathematical Foundations and Applications. Wiley, London.
Fractal, Fractal dimension, 2020. Allometry, Power law, Sierpinski triangle, Kleiber’s law. ,http://en.wikipe-
dia.org/. (accessed in June).
Grotberg, J.B., 1994. Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529 571.
Hydei, R.W., Forster, R.E., Power, G.G., Nairn, T., Rynes, R., 1996. Measurement of diffusing capac-
ity of the lungs with a stable O 2 isotope. J. Clin. Invest. 45 (7), 1178 1193.
Hoffman, K.H., 2008. An introduction to endoreversible thermodynamics. Atti dell’Accademia
Peloritana dei Pericolanti Cl. di Scienze Fisiche, Matematiche e Naturali LXXXVI (C1S0801011
(Suppl. 1)), 18.
Hoffman, K.H., Burzler, J.M., Schubert, S., 1997. Endoreversible thermodynamics. J. Non-Equil.
Thermodyn. 22 (4), 311 355.
Huo, Y., Kassab, G.S., 2012. Intraspecific scaling laws of vascular trees. J. R. Soc. Interface 9, 190 200.
Published online 15 June 2011.
Kadanoff, L.P., 1986. Fractals: where’s the physics? Phys. Today 6 7. Feb.
Keller, K.H., Seiler, L., 1971. An analysis of peripheral heat transfer in man. J. Appl. Physiol. 30, 779 789.
Kleiber, M., 1932. Body size and metabolic rate. Physiol. Rev. 27 (4), 511 547.
Ledezma, G.A.,Morega,A.M.,Bejan,A.,1996.Optimal spacing between fins with impinging flow.
ASME J. Heat. Transf. 118, 570 577.
Leopold, L.B., Wolman, M.G., Miller, J.P., 1964. Fluvial Processes in Geomorphology. Freeman, San
Francisco, ,https://archive.org/details/fluvialprocesses0000greg. (accessed in June 2020).
Mandelbrot, B.B., 1975. Les objets fractals: Forme, hasard et dimension. Flammarion, Paris.
Mandelbrot, B.B., 2020. Fractals and the geometry of nature. pp. 157 159. ,https://archive.org/details/
fractalgeometryo00beno. (accessed in June).
Metabolic Rate and Kleiber’s Law, 2020. ,http://universe-review.ca/R10-35-metabolic.htm. (accessed
in June).
Morega, A.M., Bejan, A., 2005. A constructal approach to the optimal design of photovoltaic cells. Int.
J. Green Energy 2 (3), 233 242.
Morega,A.M., Ordonez, J.C.,Morega, M.,2008. Aconstructal approach to power distribution net-
works design. In: Int. Conf. on Renew. Energy and Power Quality, ICREPQ’08, 441,
Santander, Spain, 12 14 March.
Morega A.M., Proca, A., 2004. Shape and Structure, from Engineering to Nature (in Romanian), Trans.
AGIR Publishing House & Romanian Academy Publishing House, Translation of Bejan A., 2000.
Shape and Structure, from Engineering to Nature, Cambridge University Press.
Morega A.M., Design in nature. How the constructal law governs evolution in biology, physics, technol-
ogy, and social organization (in Romanian), Ed. AGIR, Academia de ¸Stiin¸te Tehnice din România,
2013, 245 pp., Translation of: Bejan A., Zane J.P., 2012. Design In Nature. How The Constructal
Law Governs Evolution In Biology, Physics, Technology, And Social Organization, Anchor Books,
Random House Inc. New York.
Murray, C.D., 1926a. The physiological principle of minimum work: I. The vascular system and the cost
of blood volume. In: Proc. of the National Academy of Sciences of the United States of America, 12
(3), 207 214.
Murray, C.D., 1926b. The physiological principle of minimum work: II. Oxygen exchange in capillaries.
In: Proc. of the National Academy of Sciences of the United States of America, 12 (5), 299 304.
Nield, D., Bejan, A., 1999. Convection in Porous Media, second ed. Springer Verlag, New York.
Nishimura, T., Sakura, S., Gotoh, K., Morega, A.M., 2000a. Traveling plumes generated within a
double-diffusive interface between counter shear flows. Phys. Fluids 12, 3078 3081.
Nishimura, T., Kunitsugu, K., Morega, A.M., 2000b. Direct numerical simulation of layer merging in a
salt-stratified system. Numer. Heat. Transf. A 37, 323 341.