Page 174 - Computational Retinal Image Analysis
P. 174
References 169
[2] L. Joskowicz, D. Cohen, N. Caplan, J. Sosna, Automatic segmentation variability estima-
tion with segmentation priors, Med. Image Anal. 50 (2018) 54–64.
[3] L. Maier-Hein, A. Groch, A. Bartoli, et al., Comparative validation of single-shot optical
techniques for laparoscopic 3-D surface reconstruction, IEEE Trans. Med. Imaging 33
(10) (2014) 1913–1930.
[4] L. Maier-Hein, M. Eisenmann, A. Reinke, et al., Why rankings of biomedical image
analysis competitions should be interpreted with care, Nat. Commun. 9 (2018) 5217.
[5] E. Trucco, A. Ruggeri, T. Karnowski, et al., Validating retinal fundus image anal-
ysis algorithms: issues and a proposal, Investig. Ophthalmol. Vis. Sci. 54 (2013)
3546–3559.
[6] C.P. Friedman, J.C. Wyatt, Evaluation Methods in Biomedical Informatics, second ed.,
Springer-Publishing, New York, 2006.
[7] J. De Fauw, J.R. Ledsam, B. Romera-Paredes, et al., Clinically applicable deep learning
for diagnosis and referral in retinal disease, Nat. Med. 24 (2018) 1342–1350.
[8] R. Poplin, A.V. Varadarajan, K. Blumer, et al., Prediction of cardiovascular risk factors
from retinal fundus photographs via deep learning, Nat. Biomed. Eng. 2 (2018) 158–164.
[9] D.S.W. Ting, L.R. Pasquale, L. Peng, et al., Artificial intelligence and deep learning in
ophthalmology, Br. J. Ophthalmol. 103 (2019) 167–175.
[10] D.W. Palmer, T. Coppin, K. Rana, et al., Glare-free retinal imaging using a portable light
field fundus camera, Biomed. Opt. Express 9 (7) (2018) 3178–3192.
[11] Q.P. Lau, M.L. Lee, W. Hsu, T.Y. Wong, The Singapore eye vessel assessment system, in:
E.Y.K. Ng, U.R. Acharya, A. Campilo, J.S. Suri (Eds.), Image Analysis and Modeling in
Ophthalmology, CRC Press, Boca Raton, FL, 2014, pp. 143–160.
[12] S. McGrory, A.M. Taylor, J. Corley, et al., Retinal microvascular network geometry and
cognitive abilities in community-dwelling older people: the Lothian Birth Cohort 1936
Study, Br. J. Ophthalmol. 101 (7) (2017) 993–998.
[13] S. McGrory, A.M. Taylor, E. Pellegrini, et al., Towards standardization of quantitative
retinal vascular parameters: comparison of SIVA and VAMPIRE measurements in the
Lothian Birth Cohort 1936, Transl. Vis. Sci. Technol. 7 (2) (2018) 12.
[14] E. Pellegrini, G. Robertson, E. Trucco, Blood vessel segmentation and width estima-
tion in ultra-wide field scanning laser ophthalmoscopy, Biomed. Opt. Express 5 (2014)
4329–4337.
[15] T.Y. Wong, M.D. Knudtson, R. Klein, B.E. Klein, et al., Computer-assisted measure-
ment of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation
between eyes, and effect of refractive errors, Ophthalmology 111 (2004) 1183–1190.
[16] F.F. Wei, Z.Y. Zhang, T. Petit, et al., Retinal microvascular diameter, a hypertension-related
trait, in ECG-gated vs. non-gated images analyzed by IVAN and SIVA, Hypertens. Res.
39 (2016) 886–892.
[17] W. Yip, Y.C. Tham, W. Hsu, et al., Comparison of common retinal vessel caliber mea-
surement software and a conversion algorithm, Transl. Vis. Sci. Technol. 5 (2016) 11.
[18] K.L. Gwet, Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the
Extent of Agreement Among Raters, 2014.
[19] J.A. Hanley, Receiver operating characteristic (ROC) curves, in: Wiley StatsRef:
Statistics Reference Online, 2014.
[20] J.M. Bland, D.G. Altman, Comparing methods of measurement: why plotting difference
against standard method is misleading, Lancet 346 (1995) 1085–1087.
[21] J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two
methods of clinical measurement, Lancet 1 (1986) 307–310.