Page 175 - Computational Retinal Image Analysis
P. 175

170    CHAPTER 9  Validation




                          [22]  T. Stosic, B.D. Stosic, Multifractal analysis of human retinal vessels, IEEE Trans. Med.
                             Imaging 25 (8) (2006) 1101–1107.
                          [23]  M.R.K. Mookiah, S. McGrory, S. Hogg, et al., Towards standardization of retinal vas-
                             cular measurements: on the effect of image centering, in: Computational Pathology and
                             Ophthalmic Medical Image Analysis, Proc MICCAI OMIA-5 Intern. Workshop, Granada,
                             Spain, Sep 2018, Lecture Notes in Computer Science, vol. 11039, Springer, 2018.
                          [24]  J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20 (1) (1960).
                          [25]  J.L. Fleiss, Measuring nominal scale agreement among many raters, Psychol. Bull. 76 (5)
                             (1971) 378–382.
                          [26]  J. Cohen, Weighted kappa: nominal scale agreement with provision for scaled disagree-
                             ment or partial credit, Psychol. Bull. 70 (4) (1968).
                          [27]  S. Hawkins, Identification of Outliers, Monographs in Statistics an Applied Probability,
                             Springer, 1980.
                          [28]  Y.-H. Kim, A.C. Kak, Error analysis of robust optical flow estimation by least median of
                             squares methods for the varying illumination model, IEEE Trans. Pattern Anal. Mach.
                             Intell. 28 (9) (2006) 1418–1435.
                          [29]  M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting
                             with applications to image analysis and automated cartography, Commun. ACM 24 (6)
                             (1981) 381–395.
                          [30]  R. Raguram, M. Frahm, M. Pollefeys, A comparative analysis of RANSAC techniques
                             leading to random sample consensus, in: Proc. Europ. Conf. on Computer  Vision
                             (ECCV), Part II, Lecture Notes in Computer Science, vol. 5303, Springer, 2008.
                          [31]  T. Tommasini, A. Fusiello, E. Trucco, V. Roberto, Making good features track better, in:
                             Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 1998.
                          [32]  D. Freedman, P. Diaconis, On the histogram as a density estimator: L2 theory, Probab.
                             Theory Relat. Fields 57 (4) (1981) 453–476.
                          [33]  S. Philip, A.D. Fleming, K.A. Goatman, et al., The efficacy of automated “disease/no
                             disease” grading for diabetic retinopathy in a systematic screening programme, Br. J.
                             Ophthalmol. 91 (2007) 1512–1517.
                          [34]  B.H. Menze, A. Jakab, S. Bauer, et al., The multimodal brain tumor image segmentation
                             benchmark (BRATS), IEEE Trans. Med. Imaging 34 (10) (2015) 1993–2024.
                          [35]  Y. Huo, Z. Xu, H. Moon, et al., SynSeg-Net: synthetic segmentation without target mo-
                             dality ground truth, IEEE Trans. Med. Imaging 38 (4) (2019) 1016–1025.
                          [36]  T. Joyce, A. Chartsias, S.A. Tsaftaris, Deep multi-class segmentation without ground-
                             truth labels, in: Proc. Int. Conf. Medical Imaging with Deep Learning, Amsterdam, 2018.
                          [37]  T.  Kohlberger,  V.  Singh, C.  Alvino, et  al., Evaluating segmentation error without
                             ground truth, in: Proc. Int. Conf. on Medical Image Computing and Computer-Assisted
                             Intervention (MICCAI), Springer, 2012.
                          [38]  V.V. Valindria, I. Lavdas, W. Bai, et al., Reverse classification accuracy: predicting seg-
                             mentation performance in the absence of ground truth, IEEE Trans. Med. Imaging 36 (8)
                             (2017) 1597–1606.
                          [39]  D.P. Papadopoulos, J.R.R. Uijlings, F. Keller, et al., Extreme clicking for efficient object
                             annotations, in: Proc. IEEE Int. Conf. on Computer Vision (ICCV), 2017.
                          [40]  X. Wang, Y. Peng, L. Lu, et al., TieNet: text-image embedding network for common tho-
                             rax disease classification and reporting in chest X-rays, in: Proc. IEEE/CVF Conference
                             on Computer Vision and Pattern Recognition, 2018.
   170   171   172   173   174   175   176   177   178   179   180