Page 271 - Computational Retinal Image Analysis
P. 271
References 269
[39] G. Quellec, S.R. Russell, M.D. Abràmoff, Optimal filter framework for automated, instanta-
neous detection of lesions in retinal images, IEEE Trans. Med. Imaging 30 (2011) 523–533.
[40] K.S. Deepak, A. Chakravarty, J. Sivaswamy, Visual saliency based bright lesion detec-
tion and discrimination in retinal images, in: 2013 IEEE 10th International Symposium
on Biomedical Imaging (ISBI), 2013, pp. 1436–1439.
[41] M. Barakat, B. Madjarov, Automated drusen quantitaion for clinical trials, Invest.
Ophthalmol. Vis. Sci. 45 (2004) 3017.
[42] D.E. Freund, N. Bressler, P. Burlina, Automated detection of drusen in the macula, in:
ISBI'09. IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
2009, 2009, pp. 61–64.
[43] A. Banerjee, P. Burlina, C. Diehl, A support vector method for anomaly detection in
hyperspectral imagery, IEEE Trans. Geosci. Remote Sens. 44 (2006) 2282–2291.
[44] J. Cheng, D.W.K. Wong, X. Cheng, J. Liu, N.M. Tan, M. Bhargava, C.M.G. Cheung,
T.Y. Wong, Early age-related macular degeneration detection by focal biologically
inspired feature, in: 2012 19th IEEE International Conference on Image Processing
(ICIP), 2012, pp. 2805–2808.
[45] M.U. Akram, S. Mujtaba, A. Tariq, Automated drusen segmentation in fundus images
for diagnosing age related macular degeneration, in: 2013 International Conference on
Electronics, Computer and Computation (ICECCO), 2013, pp. 17–20.
[46] G. Raza, M. Rafique, A. Tariq, M.U. Akram, Hybrid classifier based drusen detec-
tion in colored fundus images, in: 2013 IEEE Jordan Conference on Applied Electrical
Engineering and Computing Technologies (AEECT), 2013, pp. 1–5.
[47] S. Waseem, M.U. Akram, B.A. Ahmed, Drusen detection from colored fundus images
for diagnosis of age related Macular degeneration, in: 2014 7th International Conference
on Information and Automation for Sustainability (ICIAfS), 2014, pp. 1–5.
[48] Y. Zheng, B. Vanderbeek, E. Daniel, D. Stambolian, M. Maguire, D. Brainard, J. Gee,
An automated drusen detection system for classifying age-related macular degenera-
tion with color fundus photographs, in: 2013 IEEE 10th International Symposium on
Biomedical Imaging (ISBI), 2013, pp. 1448–1451.
[49] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an
application to boosting, J. Comput. Syst. Sci. 55 (1997) 119–139.
[50] J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares
Support Vector Machines, World Scientific, Singapore, 2002.
[51] Complications of Age-Related Macular Degeneration Prevention Trial Study Group,
The complications of age-related macular degeneration prevention trial (CAPT): ratio-
nale, design and methodology, Clin. Trials 1 (2004) 91–107.
[52] D. Stambolian, E.B. Ciner, L.C. Reider, C. Moy, D. Dana, R. Owens, M. Schlifka,
T. Holmes, G. Ibay, J.E. Bailey-Wilson, Genome-wide scan for myopia in the Old Order
Amish, Am J. Ophthalmol. 140 (2005) 469–476.
[53] L. Brandon, Automated Drusen Detection in a Retinal Image Using Multi-Level
Analysis, Clemson University, 2003.
[54] D.W. Wong, J. Liu, X. Cheng, J. Zhang, F. Yin, M. Bhargava, G.C. Cheung, T.Y. Wong,
THALIA-An automatic hierarchical analysis system to detect drusen lesion images for
amd assessment, in: 2013 IEEE 10th International Symposium on Biomedical Imaging
(ISBI), 2013, pp. 884–887.
[55] M.R.K. Mookiah, U.R. Acharya, J.E. Koh, C.K. Chua, J.H. Tan, V. Chandran, C.M. Lim,
K. Noronha, A. Laude, L. Tong, Decision support system for age-related macular degen-
eration using discrete wavelet transform, Med. Biol. Eng. Comput. 52 (2014) 781–796.