Page 271 - Computational Retinal Image Analysis
P. 271

References  269




                    [39]  G. Quellec, S.R. Russell, M.D. Abràmoff, Optimal filter framework for automated, instanta-
                       neous detection of lesions in retinal images, IEEE Trans. Med. Imaging 30 (2011) 523–533.
                    [40]  K.S. Deepak, A. Chakravarty, J. Sivaswamy, Visual saliency based bright lesion detec-
                       tion and discrimination in retinal images, in: 2013 IEEE 10th International Symposium
                       on Biomedical Imaging (ISBI), 2013, pp. 1436–1439.
                    [41]  M.  Barakat, B.  Madjarov,  Automated drusen quantitaion for clinical trials, Invest.
                       Ophthalmol. Vis. Sci. 45 (2004) 3017.
                    [42]  D.E. Freund, N. Bressler, P. Burlina, Automated detection of drusen in the macula, in:
                       ISBI'09. IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
                       2009, 2009, pp. 61–64.
                    [43]  A. Banerjee, P. Burlina, C. Diehl, A support vector method for anomaly detection in
                       hyperspectral imagery, IEEE Trans. Geosci. Remote Sens. 44 (2006) 2282–2291.
                    [44]  J. Cheng, D.W.K. Wong, X. Cheng, J. Liu, N.M. Tan, M. Bhargava, C.M.G. Cheung,
                       T.Y.  Wong,  Early  age-related  macular  degeneration  detection  by  focal  biologically
                       inspired feature, in: 2012 19th IEEE International Conference on Image Processing
                       (ICIP), 2012, pp. 2805–2808.
                    [45]  M.U. Akram, S. Mujtaba, A. Tariq, Automated drusen segmentation in fundus images
                       for diagnosing age related macular degeneration, in: 2013 International Conference on
                       Electronics, Computer and Computation (ICECCO), 2013, pp. 17–20.
                    [46]  G. Raza, M. Rafique, A. Tariq, M.U. Akram, Hybrid classifier based drusen detec-
                       tion in colored fundus images, in: 2013 IEEE Jordan Conference on Applied Electrical
                       Engineering and Computing Technologies (AEECT), 2013, pp. 1–5.
                    [47]  S. Waseem, M.U. Akram, B.A. Ahmed, Drusen detection from colored fundus images
                       for diagnosis of age related Macular degeneration, in: 2014 7th International Conference
                       on Information and Automation for Sustainability (ICIAfS), 2014, pp. 1–5.
                    [48]  Y. Zheng, B. Vanderbeek, E. Daniel, D. Stambolian, M. Maguire, D. Brainard, J. Gee,
                       An automated drusen detection system for classifying age-related macular degenera-
                       tion with color fundus photographs, in: 2013 IEEE 10th International Symposium on
                       Biomedical Imaging (ISBI), 2013, pp. 1448–1451.
                    [49]  Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an
                       application to boosting, J. Comput. Syst. Sci. 55 (1997) 119–139.
                    [50]  J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares
                       Support Vector Machines, World Scientific, Singapore, 2002.
                    [51]  Complications of Age-Related Macular Degeneration Prevention Trial Study Group,
                       The complications of age-related macular degeneration prevention trial (CAPT): ratio-
                       nale, design and methodology, Clin. Trials 1 (2004) 91–107.
                    [52]  D. Stambolian, E.B. Ciner, L.C. Reider, C. Moy, D. Dana, R. Owens, M. Schlifka,
                       T. Holmes, G. Ibay, J.E. Bailey-Wilson, Genome-wide scan for myopia in the Old Order
                       Amish, Am J. Ophthalmol. 140 (2005) 469–476.
                    [53]  L.  Brandon,  Automated  Drusen  Detection  in  a  Retinal  Image  Using  Multi-Level
                       Analysis, Clemson University, 2003.
                    [54]  D.W. Wong, J. Liu, X. Cheng, J. Zhang, F. Yin, M. Bhargava, G.C. Cheung, T.Y. Wong,
                       THALIA-An automatic hierarchical analysis system to detect drusen lesion images for
                       amd assessment, in: 2013 IEEE 10th International Symposium on Biomedical Imaging
                       (ISBI), 2013, pp. 884–887.
                    [55]  M.R.K. Mookiah, U.R. Acharya, J.E. Koh, C.K. Chua, J.H. Tan, V. Chandran, C.M. Lim,
                       K. Noronha, A. Laude, L. Tong, Decision support system for age-related macular degen-
                       eration using discrete wavelet transform, Med. Biol. Eng. Comput. 52 (2014) 781–796.
   266   267   268   269   270   271   272   273   274   275   276