Page 274 - Computational Retinal Image Analysis
P. 274

272    CHAPTER 13  Drusen and macular degeneration




                           [88]  M.H.A. Hijazi, F. Coenen, Y. Zheng, A histogram approach for the screening of age-
                              related macular degeneration, in: Medical Image Understanding and Analysis, 2009,
                              pp. 154–158.
                           [89]  M.R.K. Mookiah, U.R. Acharya, J.E. Koh, V. Chandran, C.K. Chua, J.H. Tan, C.M. Lim,
                              E. Ng, K. Noronha, L. Tong, Automated diagnosis of age-related macular degeneration
                              using greyscale features from digital fundus images, Comput. Biol. Med. 53 (2014) 55–64.
                           [90]  M.H.A.  Hijazi,  F.P.  Coenen, Y.  Zeng,  Image  mining approaches  for  the screening
                              of age-related macular degeneration, in: Retinopathy: New Research, Nova Science
                              Publishers, Inc., 2012, pp. 101–142.
                           [91]  F.G.  Venhuizen, B.  van Ginneken, B.  Bloemen, M.J.  van Grinsven, R.  Philipsen,
                              C.  Hoyng,  T.  Theelen, C.I.  Sánchez,  Automated age-related macular degeneration
                              classification in OCT using unsupervised feature learning, in: Medical Imaging 2015:
                              Computer-Aided Diagnosis, 2015, pp. 94141I.
                           [92]  F.G.  Venhuizen, B.  van Ginneken, F.  van  Asten, M.J.  van Grinsven, S.  Fauser,
                              C.B. Hoyng, T. Theelen, C.I. Sánchez, Automated staging of age-related macular de-
                              generation using optical coherence tomography, Invest. Ophthalmol. Vis. Sci. 58 (2017)
                              2318–2328.
                           [93]  A. Albarrak, F. Coenen, Y. Zheng, Volumetric image classification using homogeneous
                              decomposition and dictionary learning: a study using retinal optical coherence tomog-
                              raphy for detecting age-related macular degeneration, Comput. Med. Imaging Graph.
                              55 (2017) 113–123.
                           [94]  C.S. Lee, D.M. Baughman, A.Y. Lee, Deep learning is effective for classifying normal ver-
                              sus age-related macular degeneration OCT images, Ophthalmol. Retina 1 (2017) 322–327.
                           [95]  K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image rec-
                              ognition, in: Presented at the International Conference on Learning Representations, 2015.
                           [96]  F. Grassmann, J. Mengelkamp, C. Brandl, S. Harsch, M.E. Zimmermann, B. Linkohr,
                              A. Peters, I.M. Heid, C. Palm, B.H. Weber, A deep learning algorithm for prediction of
                              age-related eye disease study severity scale for age-related macular degeneration from
                              color fundus photography, Ophthalmology 125 (9) (2018) 1410–1420.
                           [97]  D.S.  Kermany, M.  Goldbaum,  W.  Cai, C.C.  Valentim, H.  Liang, S.L.  Baxter,
                              A. McKeown, G. Yang, X. Wu, F. Yan, Identifying medical diagnoses and treatable
                              diseases by image-based deep learning, Cell 172 (2018) 1122–1131. e9.
                           [98]  J. De Fauw, J.R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell,
                              H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, Clinically applicable deep learn-
                              ing for diagnosis and referral in retinal disease, Nat. Med. 24 (2018) 1342.
                           [99]  O.  Ronneberger, P.  Fischer,  T.  Brox, U-net: convolutional networks for biomedical
                              image segmentation, in: International Conference on Medical Image Computing and
                              Computer-Assisted Intervention, 2015, pp. 234–241.
                          [100]  Age-Related Eye Disease Study Research Group, The age-related eye disease study
                              (AREDS): design implications AREDS report no. 1, Control. Clin. Trials 20 (1999) 573.
                          [101]  P.P. Srinivasan, L.A. Kim, P.S. Mettu, S.W. Cousins, G.M. Comer, J.A. Izatt, S. Farsiu,
                              Fully automated detection of diabetic macular edema and dry age-related macular de-
                              generation from optical coherence tomography images, Biomed. Opt. Express 5 (2014)
                              3568–3577.
                          [102]  R. Rasti, H. Rabbani, A. Mehridehnavi, F. Hajizadeh, Macular OCT classification using
                              a multi-scale convolutional neural network ensemble, IEEE Trans. Med. Imaging 37
                              (2018) 1024–1034.
                          [103]  P.  Gholami, P.  Roy, M.K.  Parthasarathy,  V.  Lakshminarayanan, OCTID: Optical
                              Coherence Tomography Image Database, arXiv preprint arXiv:1812.07056, 2018.
   269   270   271   272   273   274   275   276   277   278   279