Page 274 - Computational Retinal Image Analysis
P. 274
272 CHAPTER 13 Drusen and macular degeneration
[88] M.H.A. Hijazi, F. Coenen, Y. Zheng, A histogram approach for the screening of age-
related macular degeneration, in: Medical Image Understanding and Analysis, 2009,
pp. 154–158.
[89] M.R.K. Mookiah, U.R. Acharya, J.E. Koh, V. Chandran, C.K. Chua, J.H. Tan, C.M. Lim,
E. Ng, K. Noronha, L. Tong, Automated diagnosis of age-related macular degeneration
using greyscale features from digital fundus images, Comput. Biol. Med. 53 (2014) 55–64.
[90] M.H.A. Hijazi, F.P. Coenen, Y. Zeng, Image mining approaches for the screening
of age-related macular degeneration, in: Retinopathy: New Research, Nova Science
Publishers, Inc., 2012, pp. 101–142.
[91] F.G. Venhuizen, B. van Ginneken, B. Bloemen, M.J. van Grinsven, R. Philipsen,
C. Hoyng, T. Theelen, C.I. Sánchez, Automated age-related macular degeneration
classification in OCT using unsupervised feature learning, in: Medical Imaging 2015:
Computer-Aided Diagnosis, 2015, pp. 94141I.
[92] F.G. Venhuizen, B. van Ginneken, F. van Asten, M.J. van Grinsven, S. Fauser,
C.B. Hoyng, T. Theelen, C.I. Sánchez, Automated staging of age-related macular de-
generation using optical coherence tomography, Invest. Ophthalmol. Vis. Sci. 58 (2017)
2318–2328.
[93] A. Albarrak, F. Coenen, Y. Zheng, Volumetric image classification using homogeneous
decomposition and dictionary learning: a study using retinal optical coherence tomog-
raphy for detecting age-related macular degeneration, Comput. Med. Imaging Graph.
55 (2017) 113–123.
[94] C.S. Lee, D.M. Baughman, A.Y. Lee, Deep learning is effective for classifying normal ver-
sus age-related macular degeneration OCT images, Ophthalmol. Retina 1 (2017) 322–327.
[95] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image rec-
ognition, in: Presented at the International Conference on Learning Representations, 2015.
[96] F. Grassmann, J. Mengelkamp, C. Brandl, S. Harsch, M.E. Zimmermann, B. Linkohr,
A. Peters, I.M. Heid, C. Palm, B.H. Weber, A deep learning algorithm for prediction of
age-related eye disease study severity scale for age-related macular degeneration from
color fundus photography, Ophthalmology 125 (9) (2018) 1410–1420.
[97] D.S. Kermany, M. Goldbaum, W. Cai, C.C. Valentim, H. Liang, S.L. Baxter,
A. McKeown, G. Yang, X. Wu, F. Yan, Identifying medical diagnoses and treatable
diseases by image-based deep learning, Cell 172 (2018) 1122–1131. e9.
[98] J. De Fauw, J.R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell,
H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, Clinically applicable deep learn-
ing for diagnosis and referral in retinal disease, Nat. Med. 24 (2018) 1342.
[99] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical
image segmentation, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2015, pp. 234–241.
[100] Age-Related Eye Disease Study Research Group, The age-related eye disease study
(AREDS): design implications AREDS report no. 1, Control. Clin. Trials 20 (1999) 573.
[101] P.P. Srinivasan, L.A. Kim, P.S. Mettu, S.W. Cousins, G.M. Comer, J.A. Izatt, S. Farsiu,
Fully automated detection of diabetic macular edema and dry age-related macular de-
generation from optical coherence tomography images, Biomed. Opt. Express 5 (2014)
3568–3577.
[102] R. Rasti, H. Rabbani, A. Mehridehnavi, F. Hajizadeh, Macular OCT classification using
a multi-scale convolutional neural network ensemble, IEEE Trans. Med. Imaging 37
(2018) 1024–1034.
[103] P. Gholami, P. Roy, M.K. Parthasarathy, V. Lakshminarayanan, OCTID: Optical
Coherence Tomography Image Database, arXiv preprint arXiv:1812.07056, 2018.