Page 256 -
P. 256

Chapter 5




                                                            Segmentation






                  5.1  Active contours ................................. 237
                       5.1.1  Snakes ................................. 238
                       5.1.2  Dynamic snakes and CONDENSATION ................ 243
                       5.1.3  Scissors ................................. 246
                       5.1.4  Level Sets ................................ 248
                       5.1.5  Application: Contour tracking and rotoscoping ............ 249
                  5.2  Split and merge ................................. 250
                       5.2.1  Watershed ................................ 251
                       5.2.2  Region splitting (divisive clustering) .................. 251
                       5.2.3  Region merging (agglomerative clustering) .............. 251
                       5.2.4  Graph-based segmentation ....................... 252
                       5.2.5  Probabilistic aggregation ........................ 253
                  5.3  Mean shift and mode finding .......................... 254
                       5.3.1  K-means and mixtures of Gaussians .................. 256
                       5.3.2  Mean shift ............................... 257
                  5.4  Normalized cuts ................................. 260
                  5.5  Graph cuts and energy-based methods ..................... 264
                       5.5.1  Application: Medical image segmentation ............... 268
                  5.6  Additional reading ............................... 268
                  5.7  Exercises .................................... 270





















                  R. Szeliski, Computer Vision: Algorithms and Applications, Texts in Computer Science,  235
                  DOI 10.1007/978-1-84882-935-0_5, © Springer-Verlag London Limited 2011
   251   252   253   254   255   256   257   258   259   260   261