Page 142 - Control Theory in Biomedical Engineering
P. 142
126 Control theory in biomedical engineering
Ettehad, D., Emdin, C.A., Kiran, A., Anderson, S.G., Callender, T., Emberson, J.,
Rahimi, K., 2016. Blood pressure lowering for prevention of cardiovascular disease
and death: a systematic review and meta-analysis. Lancet 387 (10022), 957–967.
Faziludeen, S., Praveen, S., 2016. ECG beat classification using evidential K-nearest neigh-
bours. Procedia Comput. Sci. 89, 499–505.
Guti errez-Gnecchi, J.A., Morfin-Magana, R., Lorias-Espinoza, D., del Carmen Tellez-
Anguiano, A., Reyes-Archundia, E., M endez-Patin ˜o, A., Castan ˜eda-Miranda, R.,
2017. DSP-based arrhythmia classification using wavelet transform and probabilistic neu-
ral network. Biomed. Signal Process. Control 32, 44–56.
Hijazi, S., Page, A., Kantarci, B., Soyata, T., 2016. Machine learning in cardiac health mon-
itoring and decision support. Computer 49 (11), 38–48.
Huynh, Q.L., Reid, C.M., Chowdhury, E.K., Huq, M.M., Billah, B., Wing, L.M., Second
Australian National Blood Pressure Management Committee, 2014. Prediction of car-
diovascular and all-cause mortality at 10 years in the hypertensive aged population. Am. J.
Hypertens. 28 (5), 649–656.
Jambukia, S.H., Vipul, K.D., Harshadkumar, B.P., 2015. Classification of ECG signals using
machine learning techniques: a survey. In: Proc 2015 Int. Conf. on Adv. in Comput.
Eng. and App. IEEE.
Johnson, A.E., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D.A., Clifford, G.D.,
2016. Machine learning and decision support in critical care. Proc of the IEEE Institute of
Electrical and Electronics Engineers, February, pp. 444–466.
Kaplan, B.S., Uysal, A.K., Sora Gunal, E., Ergin, S., Gunal, S., Gulmezoglu, M.B., 2018.
A survey on ECG analysis. Biomed. Signal Process. Control 43, 216–235.
Kasar, S.L., Joshi, M.S., 2016. Analysis of multi-lead ECG signals using decision tree algo-
rithms. Int. J. Comput. Appl. 134(16).
Kelwade, J.P., Salankar, S.S., 2016. Radial basis function neural network for prediction of
cardiac arrhythmias based on heart rate time series. In: Proc of the First Int. Conf. on
Control, Meas. Instrum. (CMI). India, 8-10 January.
Krishnaiah, V., Narsimha, G., Chandra, S.N., 2016. Heart disease prediction system using
data mining techniques and intelligent fuzzy approach: a review. Int. J. Comput. Appl.
136 (2), 43–51.
Lassoued, H., Ketata, R., 2017. Artificial neural network classifier for heartbeat arrhythmia
detection. In: Proc. of Int. Conf. on Automatic Signal Process. (ATS), Engineering and Tech-
nology–PET. Tunisia, 22–24 March.
Lassoued, H., Ketata, R., 2018a. ECG multi-class classification using neural network as
machine learning model. In: Proc of Int. Conf. on Adv. Syst. Electric Tech. (IC_ASET).
Tunisia, 19–22 March.
Lassoued, H., Ketata, R., 2018b. Hybrid two stage neuro genetic system for arrhythmia diag-
nosis. Int. J. Comput. Sci. Netw. Secur. 18 (9), 31–42.
Lassoued, H., Ketata, R., 2018c. ECG decision support system based on feedforward neural
networks. Int. J. Smart Sens. Intell. Syst. 18(11).
Li, H., Yuan, D., Ma, X., Cui, D., Cao, L., 2017. Genetic algorithm for the optimization of
features and neural networks in ECG signals classification. Sci. Rep. 7, 41011.
Luz, E.J.D.S., Schwartz, W.R., Ca ´mara-Cha ´vez, G., Menotti, D., 2016. ECG-based heart-
beat classification for arrhythmia detection: a survey. Comput. Methods Programs
Biomed 127, 144–164.
Martı ´nez, J.P., et al., 2004. A wavelet-based ECG delineator: evaluation on standard data-
bases. IEEE Trans. Biomed. Eng. 51 (4), 570–581.
Minchol e, A., Camps, J., Lyon, A., Rodrı ´guez, B., 2019. Machine learning in the electro-
cardiogram. J. Electrocardiol. 57 (Suppl.), S61–S64. https://doi. org/10.1016/j.
jelectrocard.2019.08.008.