Page 143 - Control Theory in Biomedical Engineering
P. 143
Genetic fuzzy logic based system for arrhythmia classification 127
Mond ejar-Guerra, V., Novo, J., Rouco, J., Penedo, M.G., Ortega, M., 2019. Heartbeat
classification fusing temporal and morphological information of ECGs via ensemble of
classifiers. Biomed. Signal Process. Control 47, 41–48.
Parvaneh, S., Rubin, J., Babaeizadeh, S., Xu-Wilson, M., 2019. Cardiac arrhythmia detec-
tion using deep learning: a review. J. Electrocardiol. 57 (Suppl.), S70–S74. https://doi.
org/10.1016/j.jelectrocard.2019.08.004.
Rajamhoana, S.P., Devi, C.A., Umamaheswari, K., Kiruba, R., Karunya, K., Deepika, R.,
2018. Analysis of neural networks based heart disease prediction system. Proc of the 11th
Int. Conf. on Human Syst. Interact. (HSI). Poland, 4–6 July.
Rajesh, K.N., Dhuli, R., 2017. Classification of ECG heartbeats using nonlinear decompo-
sition methods and support vector machine. Comput. Biol. Med. 87, 271–284.
Rajkomar, A., Jeffrey, D., Isaac, K., 2019. Machine learning in medicine. N. Engl. J. Med.
380 (14), 1347–1358.
Rathi, M., Narasimhan, B., 2017. Data mining, soft computing, machine learning and bio-
inspired computing for heart disease classification/prediction—a review. Int. J. Adv.
Res. Comput. Sci. Softw. Eng. 7(4).
Savalia, S., Vahid, E., 2018. Cardiac arrhythmia classification by multi-layer perceptron and
convolution neural networks. Bioengineering 5 (2), 35.
¸
Sayilgan, E., € Ozlem, K.C., Yalcın, _ I., 2017. Use of clustering algorithms and extreme learn-
ing machine in determining arrhythmia types. In: Proc of the 25th Conf. on Signal Process.
Commun. Appl. (SIU). Turkey, 15-18 May.
Silva, I., Moody, G.B., 2014. An open-source toolbox for analysing and processing physionet
databases in matlab and octave. J. Open Res. Softw. 2(1).
Singh, S., Pandey, S.K., Pawar, U., Janghel, R.R., 2018. Classification of ECG arrhythmia
using recurrent neural networks. Procedia Comput. Sci. 132 (2018), 1290–1297.
Soria, M.L., Martı ´nez, J.P., 2009. Analysis of multidomain features for ECG classification.
In: Proc of 36th. Ann. Comp. in Card. Conf (CinC). Park City.
Vasilakos, A.V., Yu, T., Yuanzhe, Y., 2016. Neural networks for computer-aided diagnosis
in medicine: a review. Neurocomputing 216, 700–708.
Zadeh, L.A., 2015. Fuzzy logic: a personal perspective. Fuzzy Sets Syst. 281, 4–20.