Page 165 - Control Theory in Biomedical Engineering
P. 165
148 Control theory in biomedical engineering
Defazio, J., Jones, J., Tennant, F., Anne Hook, S., 2010. Academic literacy: the importance
and impact of writing across the curriculum – a case study. J. Scholarsh. Teach. Learn.
10 (2), 34–47.
Dinh, T.N., Mazenc, F., Niculescu, S.I., 2014. Interval observer composed of observers for
nonlinear systems. In: 13th European Control Conference, pp. 660–665.
Fischer, A., Plamondon, R., 2017. Signature verification based on the kinematic theory of
rapid human movements. IEEE Trans. Hum.-Mach. Syst. 47 (2), 169–180.
Gene, H.G., Michael, H., Grace, W., 1979. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics 21 (2), 215–223.
Hargrove, L.J., Englehart, K., Hudgins, B., 2007. A comparison of surface and intramuscular
myoelectric signal classification. IEEE Trans. Biomed. Eng. 54 (5), 847–853.
Hincapie, J.G., Kirsch, R.F., 2009. Feasibility of EMG-based neural network controller for
an upper extremity neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 17 (1),
80–90.
Iguider, Y., Yasuhara, M., 1995. Extracting control pulses of handwriting movement. Trans.
Soc. Instrum. Control Eng. 31 (8), 1175–1184.
Iguider, Y., Yasuhara, M., 1996. An active recognition pulses of handwriting isolated Arabic
characters. Trans. Soc. Inst. Control Eng. 32 (8), 1267–1276.
Ito, H., Dinh, T.N., 2018. Interval observers for global feedback control of nonlinear systems
with robustness with respect to disturbances. Eur. J. Control 39, 68–77.
Kamavuako, E.N., Rosenvang, J.C., Bøg, M.F., Smidstrup, A., Erkocevic, E.,
Niemeier, M.J., Jensen, W., Farina, D., 2013. Influence of the feature space on the esti-
mation of hand grasping force from intramuscular EMG. Biomed. Signal Process. Con-
trol 8 (1), 1–5.
Kim, Y., Kim, Y.H., Lee, S., 2015. Multivariable nonlinear identification of smart buildings.
Mech. Syst. Signal Process. 62 (63), 254–271.
Kim, Y., Kim, J.M., Kim, Y.H., 2016. System identification of smart buildings under ambi-
ent excitations. J Meas 87, 294–302.
Kuzborskij, A., Gijsberts, A., Caputo, B., 2012. On the challenge of classifying 52 hand
movements from surface electromyography. In: Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, San Diego, CA, pp. 4931–4937.
Linderman, M., Lebedev, M.A., Erlichman, J.S., 2009. Recognition of handwriting from
electromyography. PLoS ONE 4 (8), e6791.
Mac Donald, J.S., 1964. Experimental Studies of Handwriting Signals. (Ph.D. dissertation)
Massachusetts Institute of Technology, Cambridge.
Manabu, S., Kosaku, T., Murata, Y., 2003. Modeling of human handwriting motion by elec-
tromyographic signals on forearm muscles. In: CCCT’03.
Mastinu, E., Ahlberg, J., Lendaro, E., Hermansson, L., Ha ˚kansson, B., Ortiz-Catalan, M.,
2018. An alternative myoelectric pattern recognition approach for the control of hand
prostheses: a case study of use in daily life by a dysmelia subject. IEEE J. Transl. Eng.
Health Med. 6, 2168–2372.
Meulenbroek, R.G.J., Thomassen, A.J.W.M., 1991. Stroke-direction preferences in draw-
ing and handwriting. Hum. Mov. Sci. 10, 247–270.
Okorokova, E., Lebedev, M., Linderman, M., Ossadtchi, A., 2015. A dynamical model
improves reconstruction of handwriting from multichannel electromyographic record-
ings. Front. Neurosci. 9 (517), 389–404.
Parker, P., Englehart, K., Hudgins, B., 2006. Myoelectric signal processing for control of
powered limb prosthesis. J. Electromyogr. Kinesiol. 16 (6), 541–548.
Prabir, B., 1989. A comparative study of ordinary cross-validation, v-fold cross-validation
and the repeated learning-testing methods. Biometrika 76 (3), 503–514.
Rouvie `re, H., Delmas, A., Delmas, V., 1968. Anatomie Humaine Descriptive, topographi-
que et fonctionnelle. vol. 3. Editions Masson, p. 354.