Page 257 - Control Theory in Biomedical Engineering
P. 257
Wearable mechatronic devices for upper-limb amputees 233
Nemah, M.N., Low, C.Y., Aldulaymi, O.H., Ong, P., Qasim, A.A., 2019. A review of non-
invasive haptic feedback stimulation techniques for upper extremity prostheses. Int. J.
Integr. Eng. 11(1).
Ortiz-Catalan, M., Ha ˚kansson, B., Bra ˚nemark, R., 2014. An osseointegrated human-
machine gateway for long-term sensory feedback and motor control of artificial limbs.
Sci. Transl. Med. 6 (257), 257re6.
Ostlie, K., Lesjo, I.M.M., Franklin, R.J., Garfelt, B., Skieldal, O.H., Magnus, P., 2012. Pros-
thesis use in adult acquired major upper-limb amputees: patterns of wear, prosthetic skills
and the actual use of prostheses in activities of daily life. Disabil. Rehabil. Assist. Technol.
7, 479–493.
Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M., 2012. A review of wearable sensors
and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21.
Perry, J., Rosen, J., Burns, S., 2007. Upper-limb powered exoskeleton design. IEEE/ASME
Trans. Mechatron. 12 (4), 408–417.
Polygerinos, P., Wang, Z., Galloway, K., Wood, R., Walsh, C., 2014. Soft robotic glove for
combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143.
Pons, J.L., 2008. Wearable Robots: Biomechatronic Exoskeletons. John Wiley & Sons.
Popov, B., 1965. The bio-electrically controlled prosthesis. J. Bone Joint Surg. 14, 421–424.
Proske, U., Gandevia, S.C., 2012. The proprioceptive senses: their roles in signaling body
shape, body position and movement, and muscle force. Physiol. Rev. 92 (4), 1651–1697.
Radder, B., Prange-Lasonder, G., Kottink, A., Holmberg, J., Sletta, K., van Dijk, M.,
Meyer, T., Buurke, J.H., Rietman, J.S., 2018. The effect of a wearable soft-robotic glove
on motor function and functional performance of older adults. Assist. Technol. 30, 1–7.
Rahman, M.H., Ochoa-Luna, C., Rahman, J., Saad, M., Archambault, P., 2014. Force-
position control of a robotic exoskeleton to provide upper extremity movement assis-
tance. Int. J. Model. Identif. Control. 21 (4), 390–400.
Raskovic, D., Martin, T., Jovanov, E., 2004. Medical monitoring applications for wearable
computing. Comput. J. 47(4).
Raspopovic, S., Petrini, F.M., 2018. A computational model for the design of lower-limb
sensorimotor neuroprostheses. In: International Conference on NeuroRehabilitation.
Springer, Cham, pp. 49–53.
Resnik, L., Meucci, M.R., Lieberman-Klinger, S., Fantini, C., Kelty, D.L., Disla, R.,
Sasson, N., 2012. Advanced upper limb prosthetic devices: implications for upper limb
prosthetic rehabilitation. Arch. Phys. Med. Rehabil. 93 (4), 710–717.
Resnik, L., Ekerholm, S., Borgia, M., Clark, M.A., 2019. A national study of veterans with
major upper limb amputation: survey methods, participants, and summary findings.
PLoS One 14(3), e0213578.
Roche, A.D., Lakey, B., Mendez, I., Vujaklija, I., Farina, D., Aszmann, O.C., 2019. Clinical
perspectives in upper limb prostheses: an update. Curr. Surg. Rep. 7 (3), 5.
Schlesinger, G., 1919. Der mechanische aufbau der k€unstlichen glieder. In: Ersatzglieder und
Arbeitshilfen. Springer, Berlin, Heidelberg, pp. 321–661.
Schofield, J.S., Evans, K.R., Carey, J.P., Hebert, J.S., 2014. Applications of sensory feedback
in motorized upper extremity prosthesis: a review. Expert Rev. Med. Devices 11 (5),
499–511.
Schulz, S., F’ylatiuk, C., Bretthauer, G., 2001. A new ultralight anthropomorphic hand.
In: 2001 IEEE Conference on Robotics and Automation (ICRA). IEEE,
pp. 2437–2441.
Scott, R.N., 1992. Myoelectric control of prostheses, a brief history. In: 1992 Myoelectric
Controls/Powered Prosthetics Symposium, Fredericton, Canada.
Shen, Y., Rosen, J., 2020. EXO-UL upper limb robotic exoskeleton system series: from 1
DOF single-arm to (7+1) DOFs dual-arm. In: Wearable Robotics. Academic Press,
pp. 91–103.