Page 256 - Control Theory in Biomedical Engineering
P. 256
232 Control theory in biomedical engineering
Kuiken, T.A., Barlow, A.K., Hargrove, L., Dumanian, G.A., 2017. Targeted muscle rein-
nervation for the upper and lower extremity. Tech. Orthop. 32 (2), 109–116.
e
Lalibert , T., Baril, M., Guay, F., Gosselin, C., 2010. Towards the design of a prosthetic
underactuated hand. Mech. Sci. 1, 19–26.
LUKE Arm, 2019. Available from: http://www.mobiusbionics.com/wp-content/uploads/
2017/08/Mobius-Bionics-LUKE-Product-Spec-Sheet.pdf. (Accessed 3 September 2019).
Lundborg, G., Ros en, B., Lindberg, S., 1999. Hearing as substitution for sensation: a new
principle for artificial sensibility. J. Hand. Surg. 24 (2), 219–224.
Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S., 2014.
A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil.
11 (1), 3.
Marasco, P.D., Hebert, J.S., Sensinger, J.W., Shell, C.E., Schofield, J.S., Thumser, Z.C.,
Nataraj, R., Beckler, D.T., Dawson, M.R., Blustein, D.H., Gill, S., 2018. Illusory
movement perception improves motor control for prosthetic hands. Sci. Transl. Med.
10(432), eaao6990.
Markovic, M., Schweisfurth, M.A., Engels, L.F., Bentz, T., W€ustefeld, D., Farina, D.,
Dosen, S., 2018. The clinical relevance of advanced artificial feedback in the control
of a multi-functional myoelectric prosthesis. J. Neuroeng. Rehabil. 15 (1), 28.
Marquardt, E., 1965. The Heidelberg pneumatic arm prosthesis. J. Neuroeng. Rehabil.
British volume. 47 (3), 425–434.
Martino, G., Marks, L.E., 2001. Synesthesia: strong and weak. Curr. Dir. Psychol. Sci. 10 (2),
61–65.
Massa, B., Roccella, S., Carrozza, M.C., Dario, P., 2002. Design and development of an
underactuated prosthetic hand. In: 2002 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, vol. 4. pp. 3374–3379.
Mathiowetz, V., Volland, G., Kashman, N., Weber, K., 1985. Adult norms for the box and
block test of manual dexterity. Am. J. Occup. Ther. 39 (6), 386–391.
Mazumdar, A., 2004. Powered Upper Limb Prostheses Control, Implementation and Clin-
ical Application. Springer.
Meek, S.G., Jacobsen, S.C., Goulding, P.P., 1989. Extended physiologic taction: design and
evaluation of a proportional force feedback system. J. Rehabil. Res. Dev. 26 (3), 53–62.
Meier, R.H., 2004. History of arm amputation, prosthetic restoration and arm amputation
rehabilitation. In: Functional Restoration of Adults and Children with Upper Limb
Amputation. Springer, pp. 1–8.
Merchant, R., Cruz-Ortiz, D., Ballesteros-Escamilla, M., Chairez, I., 2018. Integrated wear-
able and self-carrying active upper limb orthosis. Proc. Inst. Mech. Eng. H J. Eng. Med.
232 (2), 172–184.
Micera, S., Carpaneto, J., Raspopovic, S., 2010. Control of hand prostheses using peripheral
information. IEEE Rev. Biomed. Eng. 3, 48–68.
Michelangelo Hand, 2019. Available from: https://accessprosthetics.com/wp-content/
uploads/2017/06/michelangelo-technology.pdf. (Accessed 3 September 2019).
Miller, L.A., Stubblefield, K.A., Lipschutz, R.D., Lock, B.A., Kuiken, T.A., 2008. Improved
myoelectric prosthesis control using targeted reinnervation surgery: a case series. IEEE
Trans. Neural Syst. Rehabil. Eng. 16 (1), 46–50.
Motti, V.G., 2020. Introduction to wearable computers. In: Wearable Interaction. Springer,
Cham, pp. 1–39.
Muceli, S., Farina, D., 2011. Simultaneous and proportional estimation of hand kinematics
from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans.
Neural Syst. Rehabil. Eng. 20 (3), 371–378.
Muilenburg, A.L., LeBlanc, M.A., 1989. Body-powered upper-limb components.
In: Comprehensive Management of the Upper-Limb Amputee. Springer, New York,
NY, pp. 28–38.