Page 255 - Control Theory in Biomedical Engineering
P. 255
Wearable mechatronic devices for upper-limb amputees 231
Hero Arm, 2019. Open Bionics. Available from: https://openbionics.com/d100161_03_
hero-arm-user-manual/. (Accessed 3 September 2019).
Hollies Hand Version 4, Anthromod, 2015. Available from: http://www.thingiverse.com/
thing:696343. (Accessed 3 September 2019).
Huaroto, J.J., Suarez, E., Krebs, H.I., Marasco, P.D., Vela, E.A., 2018. A soft pneumatic
actuator as a haptic wearable device for upper limb amputees: toward a soft robotic liner.
IEEE Robot. Autom. Lett. 4 (1), 17–24.
Huaroto, J.J., Ticllacuri, V., Suarez, E., Ccorahua, R., Vela, E.A., 2019. A soft pneumatic
haptic actuator mechanically programmed for providing Mechanotactile feedback. MRS
Adv. 4 (19), 1131–1136.
Hung, K., Zhang, Y.T., Tai, B., 2004. Wearable medical devices for tele-home healthcare.
h
In: Proceedings of the 26 Annual International Conference of the IEEE EMBS, vol. 7,
pp. 5384–5387.
I-Limb Ultra, 2019. Available from: https://www.ossur.com/en-us/prosthetics/arms/i-
limb-ultra. (Accessed 9 March 2019).
Islam, M.R., Spiewak, C., Rahman, M.H., Fareh, R., 2017. A brief review on robotic exo-
skeletons for upper extremity rehabilitation to find the gap between research porotype
and commercial type. Adv. Robot. Autom. 6 (3), 2.
Jacobsen, S.C., Knutti, D.F., Sarcos, L.C., 1999. Body-Powered Prosthetic Arm. U.S. Patent
5,888,235.
Jarrass e, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., Roby-
Brami, A., 2014. Robotic exoskeletons: a perspective for the rehabilitation of arm coor-
dination in stroke patients. Front. Hum. Neurosci. 8, 947.
Johannes, M., Faulring, E., Katyal, K., Helder, J., Makhlin, A., Moyer, T., Wahl, D.,
Solberg, J., Clark, S., Armiger, R., Lontz, T., Geberth, K., Moran, C., Wester, B.,
Van Doren, T., Santos-Munne, J., 2020. The modular prosthetic limb. In: Wearable
Robotics. Academic Press, pp. 393–444.
Johnson, K.O., 2001. The roles and functions of cutaneous mechanoreceptors. Curr. Opin.
Neurobiol. 11 (4), 455–461.
Kaczmarek, K.A., Webster, J.G., Bach-y-Rita, P., Tompkins, W.J., 1991. Electrotactile and
vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38 (1),
1–16.
Kazerooni, H., 1989. Human-robot interaction via the transfer of power and information
signals. IEEE Trans. Syst. Man Cybern. 20 (2), 450–463.
Kim, K., Colgate, J.E., Santos-Munn e, J.J., Makhlin, A., Peshkin, M.A., 2009. On the design
of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Trans. Mecha-
tron. 15 (1), 27–39.
Kristjansdottir, F., Dahlin, L.B., Rosberg, H.E., Carlsson, I.K., 2019. Social participation in
persons with upper limb amputation receiving an esthetic prosthesis. J. Hand Ther.
https://doi.org/10.1016/j.jht.2019.03.010 in press.
Kuiken, T., 2006. Targeted reinnervation for improved prosthetic function. Phys. Med.
Rehabil. Clin. N. Am. 17 (1), 1–13.
Kuiken, T.A., Dumanian, G.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A., 2004. The
use of targeted muscle reinnervation for improved myoelectric prosthesis control in a
bilateral shoulder disarticulation amputee. Prosthetics Orthot. Int. 28 (3), 245–253.
Kuiken, T., Miller, L.A., Lipschutz, R.D., Lock, B.A., Stubblefield, K., Marasco, P.D.,
Zhou, P., Dumanian, G., 2007. Targeted reinnervation for enhanced prosthetic arm
function in a woman with a proximal amputation: a case study. Lancet 369 (9559),
371–380.
Kuiken, T.A., Li, G., Lock, B.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A.,
Englehart, K.B., 2009. Targeted muscle reinnervation for real-time myoelectric control
of multifunction artificial arms. JAMA 301 (6), 619–628.