Page 391 - Control Theory in Biomedical Engineering
P. 391

Tunable stiffness using negative Poisson's ratio  357


              Ditaranto, R.A., 1964. Theory of vibratory bending for elastic and viscoelastic layered finite-
                 length beams. J. Appl. Mech. https://doi.org/10.1115/1.3627330.
              Feng, H., Ma, J., Chen, Y., You, Z., 2018. Twist of tubular mechanical metamaterials based
                 on waterbomb origami. Sci. Rep. https://doi.org/10.1038/s41598-018-27877-1.
              Haines, C.S., Lima, M.D., Li, N., Spinks, G.M., Foroughi, J., Madden, J.D.W., et al., 2014.
                 Artificial muscles from fishing line and sewing thread. Science. https://doi.org/10.1126/
                 science.1246906.
              Hao, T., 2002. Electrorheological fluids. In: Encyclopedia of Smart Materials. https://doi.
                 org/10.1002/0471216275.esm035.
              Huan, A.S., Xu, W., Ren, H., 2016. Investigation of a stiffness varying mechanism for flex-
                 ible robotic system. In: 2016 IEEE International Conference on Mechatronics and Auto-
                 mation, IEEE ICMA 2016. https://doi.org/10.1109/ICMA.2016.7558669.
              Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T., 2012. Design of a
                 variable stiffness flexible manipulator with composite granular jamming and membrane
                 coupling. In: IEEE International Conference on Intelligent Robots and Systems. https://
                 doi.org/10.1109/IROS.2012.6385696.
              Jiang, A., Dasgupta, P., Althoefer, K., Nanayakkara, T., 2014. Robotic granular jamming: a
                 new variable stiffness mechanism. J. Robot. Soc. Japan. https://doi.org/10.7210/
                 jrsj.32.333.
              Kolken, H.M.A., Zadpoor, A.A., 2017. Auxetic mechanical metamaterials. RSC Adv.
                 https://doi.org/10.1039/c6ra27333e.
              Li, Z., Du, R., Yu, H., Ren, H., 2014. Statics Modeling of an Underactuated Wire-Driven
                 Flexible Robotic Arm. https://doi.org/10.1109/biorob.2014.6913797.
              Li, Z., Feiling, J., Ren, H., Yu, H., 2015a. A novel tele-operated flexible surgical arm with
                 optimal trajectory tracking aiming for minimally invasive neurosurgery. In: Proceedings
                 of the 2015 7th IEEE International Conference on Cybernetics and Intelligent Systems,
                 CIS 2015 and Robotics, Automation and Mechatronics, RAM 2015. https://doi.org/
                 10.1109/ICCIS.2015.7274580.
              Li, Z., Zin Oo, M., Nalam, V., Duc Thang, V., Ren, H., Kofidis, T., Yu, H., 2015b. Design
                 of a novel flexible endoscope—cardioscope. J. Mech. Robot. https://doi.org/
                 10.1115/1.4032272.
              Li, Z., Ren, H., Chiu, P.W.Y., Du, R., Yu, H., 2016. A novel constrained wire-driven flex-
                 ible mechanism and its kinematic analysis. Mech. Mach. Theory. https://doi.org/
                 10.1016/j.mechmachtheory.2015.08.019.
              Li, Z., Wu, L., Ren, H., Yu, H., 2017. Kinematic comparison of surgical tendon-driven
                 manipulators and concentric tube manipulators. Mech. Mach. Theory. https://doi.
                 org/10.1016/j.mechmachtheory.2016.09.018.
              Lindler, J.E., Wereley, N.M., 1999. Double adjustable shock absorbers using electrorheolo-
                 gical fluid. J. Intell. Mater. Syst. Struct. https://doi.org/10.1106/468R-DHQM-076W-
                 MAF6.
              Liu, B., Boggs, S.A., Shaw, M.T., 2001. Electrorheological properties of anisotropically filled
                 elastomers. IEEE Trans. Dielectr. Electr. Insul. https://doi.org/10.1109/94.919919.
              Loeve, A.J., Van De Ven, O.S., Vogel, J.G., Breedveld, P., Dankelman, J., 2010. Vacuum
                 packed particles as flexible endoscope guides with controllable rigidity. Granul. Matter.
                 https://doi.org/10.1007/s10035-010-0193-8.
              McEvoy, M.A., Correll, N., 2015. Thermoplastic variable stiffness composites with embed-
                 ded, networked sensing, actuation, and control. J. Compos. Mater. https://doi.org/
                 10.1177/0021998314525982.
              McKnight, G., Doty, R., Keefe, A., Herrera, G., Henry, C., 2010. Segmented reinforcement
                 variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct.
                 https://doi.org/10.1177/1045389X10386399.
   386   387   388   389   390   391   392   393   394   395   396