Page 392 - Control Theory in Biomedical Engineering
P. 392

358   Control theory in biomedical engineering


          Nakamura, T., Saga, N., Nakazawa, M., 2002. Impedance control of a single shaft-type
             clutch using homogeneous electrorheological fluid. J. Intell. Mater. Syst. Struct.
             https://doi.org/10.1106/104538902029068.
          Parthasarathy, M., Klingenberg, D., 1996. Electrorheology: mechanisms and models. Mater.
             Sci. Eng. R. Rep. 17 (2), 57–103. https://doi.org/10.1016/0927-796X(96)00191-X.
          Saxena, K.K., Das, R., Calius, E.P., 2016. Three decades of auxetics research—materials with
             negative Poisson’s ratio: a review. Adv. Eng. Mater. https://doi.org/10.1002/
             adem.201600053.
          Schubert, B.E., Floreano, D., 2013. Variable stiffness material based on rigid low-melting-
             point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC
             Adv. https://doi.org/10.1039/c3ra44412k.
          See, H., Sakurai, R., Saito, T., Asai, S., Sumita, M., 2001. Relationship between electric
             current and matrix modulus in electrorheological elastomers. J. Electrostat. https://
             doi.org/10.1016/S0304-3886(01)00028-6.
          Shan, W., Lu, T., Majidi, C., 2013. Soft-matter composites with electrically tunable elastic
             rigidity. Smart Mater. Struct. https://doi.org/10.1088/0964-1726/22/8/085005.
          Shan, W., Diller, S., Tutcuoglu, A., Majidi, C., 2015. Rigidity-tuning conductive elastomer.
             Smart Mater. Struct. https://doi.org/10.1088/0964-1726/24/6/065001.
          Taghavi, M., Helps, T., Huang, B., Rossiter, J., 2018. 3D-printed ready-to-use variable-
             stiffness  structures.  IEEE  Robot.  Autom.  Lett.  https://doi.org/10.1109/
             LRA.2018.2812917.
          Tan, Z., Ren, H., 2017. Design analysis and bending modeling of a flexible robot for
             endoscope steering. Int. J. Intell. Robot. Appl. https://doi.org/10.1007/s41315-017-
             0014-x.
          Tangboriboon, N., Sirivat, A., Kunanuruksapong, R., Wongkasemjit, S., 2009. Electro-
             rheological properties of novel piezoelectric lead zirconate titanate Pb(Zr0.5,Ti0.5)
             O3-acrylic rubber composites. Mater. Sci. Eng. C 29 (6), 1913–1918. https://doi.
             org/10.1016/j.msec.2009.03.002.
          Varga, Z., Filipcsei, G., Zrı ´nyi, M., 2006. Magnetic field sensitive functional elastomers with
             tuneable elastic modulus. Polymer. https://doi.org/10.1016/j.polymer.2005.10.139.
          Wei, K., Meng, G., Zhang, W., Zhou, S., 2007. Vibration characteristics of rotating sand-
             wich beams filled with electrorheological fluids. J. Intell. Mater. Syst. Struct. https://doi.
             org/10.1177/1045389X06072380.
          Wu, J., Gong, X., Fan, Y., Xia, H., 2010. Anisotropic polyurethane magnetorheological
             elastomer prepared through in situ polycondensation under a magnetic field. Smart
             Mater. Struct. https://doi.org/10.1088/0964-1726/19/10/105007.
          Wu, L., Song, S., Wu, K., Lim, C.M., Ren, H., 2017. Development of a compact continuum
             tubular robotic system for nasopharyngeal biopsy. Med. Biol. Eng. Comput. https://doi.
             org/10.1007/s11517-016-1514-9.
          Yeh, Z.F., Shih, Y.S., 2005. Critical load, dynamic characteristics and parametric instability
             of electrorheological material-based adaptive beams. Comput. Struct. https://doi.org/
             10.1016/j.compstruc.2005.02.028.
          Zhai, Z., Wang, Y., Jiang, H., 2018. Origami-inspired, on-demand deployable and collaps-
             ible mechanical metamaterials with tunable stiffness. Proc. Natl. Acad. Sci. U. S. A.
             https://doi.org/10.1073/pnas.1720171115.
          Zhou, G.Y., 2003. Shear properties of a magnetorheological elastomer. Smart Mater. Struct.
             https://doi.org/10.1088/0964-1726/12/1/316.
   387   388   389   390   391   392   393   394   395   396   397