Page 392 - Control Theory in Biomedical Engineering
P. 392
358 Control theory in biomedical engineering
Nakamura, T., Saga, N., Nakazawa, M., 2002. Impedance control of a single shaft-type
clutch using homogeneous electrorheological fluid. J. Intell. Mater. Syst. Struct.
https://doi.org/10.1106/104538902029068.
Parthasarathy, M., Klingenberg, D., 1996. Electrorheology: mechanisms and models. Mater.
Sci. Eng. R. Rep. 17 (2), 57–103. https://doi.org/10.1016/0927-796X(96)00191-X.
Saxena, K.K., Das, R., Calius, E.P., 2016. Three decades of auxetics research—materials with
negative Poisson’s ratio: a review. Adv. Eng. Mater. https://doi.org/10.1002/
adem.201600053.
Schubert, B.E., Floreano, D., 2013. Variable stiffness material based on rigid low-melting-
point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC
Adv. https://doi.org/10.1039/c3ra44412k.
See, H., Sakurai, R., Saito, T., Asai, S., Sumita, M., 2001. Relationship between electric
current and matrix modulus in electrorheological elastomers. J. Electrostat. https://
doi.org/10.1016/S0304-3886(01)00028-6.
Shan, W., Lu, T., Majidi, C., 2013. Soft-matter composites with electrically tunable elastic
rigidity. Smart Mater. Struct. https://doi.org/10.1088/0964-1726/22/8/085005.
Shan, W., Diller, S., Tutcuoglu, A., Majidi, C., 2015. Rigidity-tuning conductive elastomer.
Smart Mater. Struct. https://doi.org/10.1088/0964-1726/24/6/065001.
Taghavi, M., Helps, T., Huang, B., Rossiter, J., 2018. 3D-printed ready-to-use variable-
stiffness structures. IEEE Robot. Autom. Lett. https://doi.org/10.1109/
LRA.2018.2812917.
Tan, Z., Ren, H., 2017. Design analysis and bending modeling of a flexible robot for
endoscope steering. Int. J. Intell. Robot. Appl. https://doi.org/10.1007/s41315-017-
0014-x.
Tangboriboon, N., Sirivat, A., Kunanuruksapong, R., Wongkasemjit, S., 2009. Electro-
rheological properties of novel piezoelectric lead zirconate titanate Pb(Zr0.5,Ti0.5)
O3-acrylic rubber composites. Mater. Sci. Eng. C 29 (6), 1913–1918. https://doi.
org/10.1016/j.msec.2009.03.002.
Varga, Z., Filipcsei, G., Zrı ´nyi, M., 2006. Magnetic field sensitive functional elastomers with
tuneable elastic modulus. Polymer. https://doi.org/10.1016/j.polymer.2005.10.139.
Wei, K., Meng, G., Zhang, W., Zhou, S., 2007. Vibration characteristics of rotating sand-
wich beams filled with electrorheological fluids. J. Intell. Mater. Syst. Struct. https://doi.
org/10.1177/1045389X06072380.
Wu, J., Gong, X., Fan, Y., Xia, H., 2010. Anisotropic polyurethane magnetorheological
elastomer prepared through in situ polycondensation under a magnetic field. Smart
Mater. Struct. https://doi.org/10.1088/0964-1726/19/10/105007.
Wu, L., Song, S., Wu, K., Lim, C.M., Ren, H., 2017. Development of a compact continuum
tubular robotic system for nasopharyngeal biopsy. Med. Biol. Eng. Comput. https://doi.
org/10.1007/s11517-016-1514-9.
Yeh, Z.F., Shih, Y.S., 2005. Critical load, dynamic characteristics and parametric instability
of electrorheological material-based adaptive beams. Comput. Struct. https://doi.org/
10.1016/j.compstruc.2005.02.028.
Zhai, Z., Wang, Y., Jiang, H., 2018. Origami-inspired, on-demand deployable and collaps-
ible mechanical metamaterials with tunable stiffness. Proc. Natl. Acad. Sci. U. S. A.
https://doi.org/10.1073/pnas.1720171115.
Zhou, G.Y., 2003. Shear properties of a magnetorheological elastomer. Smart Mater. Struct.
https://doi.org/10.1088/0964-1726/12/1/316.