Page 94 - Control Theory in Biomedical Engineering
P. 94

80    Control theory in biomedical engineering


          Hajizadeh, I., Rashid, M., Samadi, S., Sevil, M., Hobbs, N., Brandt, R., Cinar, A., 2019c.
             Adaptive personalized multivariable artificial pancreas using plasma insulin estimates.
             J. Process Control 80, 26–40.
          Hajizadeh, I., Samadi, S., Sevil, M., Rashid, M., Cinar, A., 2019d. Performance assessment
             and modification of an adaptive model predictive control for automated insulin delivery
             by a multivariable artificial pancreas. Ind. Eng. Chem. Res. 58 (26), 11506–11520.
          Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M.,
             Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T.,
             Wilinska, M.E., 2004. Nonlinear model predictive control of glucose concentration
             in subjects with type 1 diabetes. Physiol. Meas. 25 (4), 905.
          Kola ˚s, S., Foss, B.A., Schei, T.S., 2009. Constrained nonlinear state estimation based on the
             UKF approach. Comput. Chem. Eng. 33 (8), 1386–1401.
          Laguna Sanz, A.J., Doyle III, F.J., Dassau, E., 2017. An enhanced model predictive control
             for the artificial pancreas using a confidence index based on residual analysis of past pre-
             dictions. J. Diabetes Sci. Technol. 11 (3), 537–544.
          Martin, R.B., 1992. Optimal control drug scheduling of cancer chemotherapy. Automatica
             28 (6), 1113–1123.
          Martin, R., Teo, K.L., 1994. Optimal Control of Drug Administration in Cancer Chemo-
             therapy. World Scientific, Singapore.
          Messori, M., Incremona, G.P., Cobelli, C., Magni, L., 2018. Individualized model predictive
             control for the artificial pancreas: in silico evaluation of closed-loop glucose control.
             IEEE Control Syst. Mag. 38 (1), 86–104.
          Neatpisarnvanit, C., Boston, J.R., 2002. Estimation of plasma insulin from plasma glucose.
             IEEE Trans. Biomed. Eng. 49 (11), 1253–1259.
          Ogunnaike, B.A., 2019. 110th anniversary: process and systems engineering perspectives on
             personalized medicine and the design of effective treatment of diseases. Ind. Eng. Chem.
             Res. 58 (44), 20357–20369.
          Pannocchia, G., Laurino, M., Landi, A., 2010. A model predictive control strategy toward
             optimal structured treatment interruptions in anti-HIV therapy. IEEE Trans. Biomed.
             Eng. 57 (5), 1040–1050.
          Parker, R.S., 2009. Automation and control in biomedical systems. In: Springer Handbook
             of Automation, Springer, pp. 1361–1378.
          Parker, R.S., Doyle III, F.J., 2001. Control-relevant modeling in drug delivery. Adv. Drug
             Deliv. Rev. 48 (2–3), 211–228.
          Peyser, T., Dassau, E., Breton, M., Skyler, J.S., 2014. The artificial pancreas: current status
             and future prospects in the management of diabetes. Ann. N. Y. Acad. Sci. 1311 (1),
             102–123.
          Rashid, M., Samadi, S., Sevil, M., Hajizadeh, I., Kolodziej, P., Hobbs, N., Maloney, Z.,
             Brandt, R., Feng, J., Park, M., Quinn, L., Cinar, A., 2019. Simulation software for
             assessment of nonlinear and adaptive multivariable control algorithms: glucose-insulin
             dynamics in type 1 diabetes. Comput. Chem. Eng. 130, 106565.
          Samadi, S., Turksoy, K., Hajizadeh, I., Feng, J., Sevil, M., Cinar, A., 2017. Meal detection
             and carbohydrate estimation using continuous glucose sensor data. IEEE J. Biomed.
             Health Inform. 21 (3), 619–627.
          Samadi, S., Rashid, M., Turksoy, K., Feng, J., Hajizadeh, I., Hobbs, N., Lazaro, C.,
             Sevil, M., Littlejohn, E., Cinar, A., 2018. Automatic detection and estimation of unan-
             nounced meals for multivariable artificial pancreas system. Diabetes Technol. Ther.
             20 (3), 235–246.
          Silvia, O., Josep, V., Remei, C., Joaquim, A., 2017. A review of personalized blood glucose
             prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 33 (6),
             e2833. https://doi.org/10.1002/cnm.2833.
   89   90   91   92   93   94   95   96   97   98   99