Page 94 - Control Theory in Biomedical Engineering
P. 94
80 Control theory in biomedical engineering
Hajizadeh, I., Rashid, M., Samadi, S., Sevil, M., Hobbs, N., Brandt, R., Cinar, A., 2019c.
Adaptive personalized multivariable artificial pancreas using plasma insulin estimates.
J. Process Control 80, 26–40.
Hajizadeh, I., Samadi, S., Sevil, M., Rashid, M., Cinar, A., 2019d. Performance assessment
and modification of an adaptive model predictive control for automated insulin delivery
by a multivariable artificial pancreas. Ind. Eng. Chem. Res. 58 (26), 11506–11520.
Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M.,
Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T.,
Wilinska, M.E., 2004. Nonlinear model predictive control of glucose concentration
in subjects with type 1 diabetes. Physiol. Meas. 25 (4), 905.
Kola ˚s, S., Foss, B.A., Schei, T.S., 2009. Constrained nonlinear state estimation based on the
UKF approach. Comput. Chem. Eng. 33 (8), 1386–1401.
Laguna Sanz, A.J., Doyle III, F.J., Dassau, E., 2017. An enhanced model predictive control
for the artificial pancreas using a confidence index based on residual analysis of past pre-
dictions. J. Diabetes Sci. Technol. 11 (3), 537–544.
Martin, R.B., 1992. Optimal control drug scheduling of cancer chemotherapy. Automatica
28 (6), 1113–1123.
Martin, R., Teo, K.L., 1994. Optimal Control of Drug Administration in Cancer Chemo-
therapy. World Scientific, Singapore.
Messori, M., Incremona, G.P., Cobelli, C., Magni, L., 2018. Individualized model predictive
control for the artificial pancreas: in silico evaluation of closed-loop glucose control.
IEEE Control Syst. Mag. 38 (1), 86–104.
Neatpisarnvanit, C., Boston, J.R., 2002. Estimation of plasma insulin from plasma glucose.
IEEE Trans. Biomed. Eng. 49 (11), 1253–1259.
Ogunnaike, B.A., 2019. 110th anniversary: process and systems engineering perspectives on
personalized medicine and the design of effective treatment of diseases. Ind. Eng. Chem.
Res. 58 (44), 20357–20369.
Pannocchia, G., Laurino, M., Landi, A., 2010. A model predictive control strategy toward
optimal structured treatment interruptions in anti-HIV therapy. IEEE Trans. Biomed.
Eng. 57 (5), 1040–1050.
Parker, R.S., 2009. Automation and control in biomedical systems. In: Springer Handbook
of Automation, Springer, pp. 1361–1378.
Parker, R.S., Doyle III, F.J., 2001. Control-relevant modeling in drug delivery. Adv. Drug
Deliv. Rev. 48 (2–3), 211–228.
Peyser, T., Dassau, E., Breton, M., Skyler, J.S., 2014. The artificial pancreas: current status
and future prospects in the management of diabetes. Ann. N. Y. Acad. Sci. 1311 (1),
102–123.
Rashid, M., Samadi, S., Sevil, M., Hajizadeh, I., Kolodziej, P., Hobbs, N., Maloney, Z.,
Brandt, R., Feng, J., Park, M., Quinn, L., Cinar, A., 2019. Simulation software for
assessment of nonlinear and adaptive multivariable control algorithms: glucose-insulin
dynamics in type 1 diabetes. Comput. Chem. Eng. 130, 106565.
Samadi, S., Turksoy, K., Hajizadeh, I., Feng, J., Sevil, M., Cinar, A., 2017. Meal detection
and carbohydrate estimation using continuous glucose sensor data. IEEE J. Biomed.
Health Inform. 21 (3), 619–627.
Samadi, S., Rashid, M., Turksoy, K., Feng, J., Hajizadeh, I., Hobbs, N., Lazaro, C.,
Sevil, M., Littlejohn, E., Cinar, A., 2018. Automatic detection and estimation of unan-
nounced meals for multivariable artificial pancreas system. Diabetes Technol. Ther.
20 (3), 235–246.
Silvia, O., Josep, V., Remei, C., Joaquim, A., 2017. A review of personalized blood glucose
prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 33 (6),
e2833. https://doi.org/10.1002/cnm.2833.