Page 93 - Control Theory in Biomedical Engineering
P. 93
Adaptive control of artificial pancreas systems for treatment of type 1 diabetes 79
de Pereda, D., Romero-Vivo, S., Ricarte, B., Rossetti, P., Ampudia-Blasco, F.J., Bondia, J.,
2016. Real-time estimation of plasma insulin concentration from continuous glucose
monitor measurements. Comput. Methods Biomech. Biomed. Eng. 19 (9), 934–942.
Dochain, D., 2003. State and parameter estimation in chemical and biochemical processes: a
tutorial. J. Process Control 13 (8), 801–818.
Doyle, F., Jovanovic, L., Seborg, D., Parker, R.S., Bequette, B.W., Jeffrey, A.M., Xia, X.,
Craig, I.K., McAvoy, T., 2007. A tutorial on biomedical process control. J. Process Con-
trol 17 (7), 571–572.
Eberle, C., Ament, C., 2011. The unscented Kalman filter estimates the plasma insulin from
glucose measurement. Biosystems 103 (1), 67–72.
Eisenbarth, G.S., 2005. Type 1 diabetes mellitus. Joslin’s Diabetes Mellitus 14, 399–424.
El Fathi, A., Smaoui, M.R., Gingras, V., Boulet, B., Haidar, A., 2018. The artificial pancreas
and meal control: an overview of postprandial glucose regulation in type 1 diabetes. IEEE
Control Syst. Mag. 38 (1), 67–85.
Esposito, S., Santi, E., Mancini, G., Rogari, F., Tascini, G., Toni, G., Argentiero, A.,
Berioli, M.G., 2018. Efficacy and safety of the artificial pancreas in the paediatric pop-
ulation with type 1 diabetes. J. Transl. Med. 16 (1), 176.
Garcia-Tirado, J., Corbett, J.P., Boiroux, D., Jørgensen, J.B., Breton, M.D., 2019. Closed-
loop control with unannounced exercise for adults with type 1 diabetes using the ensem-
ble model predictive control. J. Process Control 80, 202–210.
Gondhalekar, R., Dassau, E., Doyle, F.J., 2016. Periodic zone-MPC with asymmetric costs
for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica
71, 237–246.
Goodwin, G.C., Medioli, A.M., Murray, K., Sykes, R., Stephen, C., 2019. Applications of
MPC in the area of health care. In: Handbook of Model Predictive Control, Springer,
pp. 529–550.
Hajizadeh, I., Shahrokhi, M., 2015. Observer-based output feedback linearization control
with application to HIV dynamics. Ind. Eng. Chem. Res. 54 (10), 2697–2708.
Hajizadeh, I., Rashid, M., Turksoy, K., Samadi, S., Feng, J., Frantz, N., Sevil, M.,
Cengiz, E., Cinar, A., 2017a. Plasma insulin estimation in people with type 1 diabetes
mellitus. Ind. Eng. Chem. Res. 56 (35), 9846–9857.
Hajizadeh, I., Rashid, M., Turksoy, K., Samadi, S., Feng, J., Sevili, M., Frantz, N.,
Lazaro, C., Maloney, Z., Littlejohn, E., Cinar, A., 2017b. Multivariable recursive sub-
space identification with application to artificial pancreas systems. In: IFAC-
PapersOnLine, pp. 909–914.
Hajizadeh, I., Rashid, M., Cinar, A., 2018a. Ensuring stability and fidelity of recursively
identified control-relevant models. In: The 18th IFAC Symposium on System Identifi-
cation (SYSID), pp. 927–932.
Hajizadeh, I., Rashid, M., Cinar, A., 2018b. Integrating compartment models with recursive
system identification. In: American Control Conference (ACC), pp. 3583–3588.
Hajizadeh, I., Rashid, M., Samadi, S., Feng, J., Sevil, M., Hobbs, N., Lazaro, C.,
Maloney, Z., Brandt, R., Yu, X., Turksoy, K., Littlejohn, E., Cengiz, E., Cinar, A.,
2018c. Adaptive and personalized plasma insulin concentration estimation for artificial
pancreas systems. J. Diabetes Sci. Technol. 12 (3), 639–649.
Hajizadeh, I., Rashid, M., Turksoy, K., Samadi, S., Feng, J., Sevil, M., Hobbs, N.,
Lazaro, C., Maloney, Z., Littlejohn, E., Cinar, A., 2018d. Incorporating unannounced
meals and exercise in adaptive learning of personalized models for multivariable artificial
pancreas systems. J. Diabetes Sci. Technol. 12 (5), 953–966.
Hajizadeh, I., Hobbs, N., Samadi, S., Sevil, M., Rashid, M., Brandt, R., Askari, M.R.,
Maloney, Z., Cinar, A., 2019a. Controlling the AP controller: controller performance
assessment and modification. J. Diabetes Sci. Technol. 13 (6), 1091–1104.
Hajizadeh, I., Rashid, M., Cinar, A., 2019b. Plasma-insulin-cognizant adaptive model pre-
dictive control for artificial pancreas systems. J. Process Control 77, 97–113.