Page 106 - Curvature and Homology
P. 106

88      III.  RIEMANNIAN  MANIFOLDS:  CURVATURE,  HOMOLOGY

          We now seek a result analogous to theorem 3.2.1  for b,  (0 < p < n).
        To this end, let a = (l/p!)ql...,p  duil A   A  duiv  be a  harmonic form of
        degree p. Then, again
                            0 = (Aa, a) =   Aa A *a,
                                        IM
        and so from (2.12.4)  and (2.7.11)  we  obtain  the integral formula







        Now,

















        It follows






         Setting



         we  obtain

         Theorem  3.2.4.  If  on  a  compact  and  orientable Riemannian  manifold
         M the quadratic form F(a) is positive de$nite,
   101   102   103   104   105   106   107   108   109   110   111