Page 147 - Curvature and Homology
P. 147

EXERCISES
        Indeed,




        Differentiating the equations (3.D.3)  we  obtain

                                dA'  = dt A dai.
        On the other hand,




        It follows that
                                 a
                              i (T) daj = akcirar
        and
                 i (=)  a   dAj  = cirak A wr + akQr  - akc~ac;,wt A wa.




        Thus,
                                a
                             i (T)   dt~ = akckp.


        On the other hand, by setting



                                afik  - arci  p
                                --                             (3.D.4)
                                 at      ra  jk*
        Since hX0, a',  -, an) = 0, it follows that fL(0, a',  -, an)  = 0. Consequently,
        by (3.D.4)  the flk vanish for all t, and so the V vanish identically. Hence,

                               K =       A wk.
         Now,  consider the map   -
                                 +R"-cR"+'
        defined by
                           +(XI, ***,  X")  = (1, Xl, ***,  X")
        and set
                                  d = d*w'.
   142   143   144   145   146   147   148   149   150   151   152