Page 235 - DSP Integrated Circuits
P. 235

220                                        Chapter 5 Finite Word Length Effects

        [15] Jackson L.B.: Roundoff-Noise and Analysis for Fixed-Point Digital Filters
             Realized in Cascade or Parallel Form, IEEE Trans, on Audio Electroacoust.,
             Vol. AU-16, pp. 413^21, Sept. 1968.
        [16] Jackson L.B.: On the Interaction of Roundoff Noise and Dynamic Range in
             Digital Filters, Bell Syst. Techn. J., Vol. 49, pp. 159-184, Feb. 1970.
        [17] Jackson L.B.: Roundoff Noise Bounds Derived from Coefficient Sensitivities
             for Digital Filters, IEEE Trans, on Circuits and Systems, Vol. CAS-23, No. 8,
             pp. 481-485, Aug. 1976.
        [18] Laakso T.I. and Hartimo I.O.: Noise Reduction in Recursive Digital Filters
             Using High-Order Error Feedback, IEEE Trans, on Signal Processing, Vol.
             SP-40, No. 5, pp. 1096-1107, May 1992.
        [19] Lin T. and Chua L.O: On Chaos of Digital Filters in the Real World, IEEE
             Trans, on Circuits and Systems, Vol. CAS-38, No. 5, pp. 557-558, May 1991.
        [20] Liu B. and Kaneko T.: Error Analysis of Digital Filters Realized Using
             Floating Point Arithmetic, Proc. IEEE, Vol. 57, No. 10, pp. 1735-1747, Oct.
             1969.
        [21] Liu B.: Effect of Finite Word Length on the Accuracy of Digital Filters—A
             Review, IEEE Trans, on Circuit Theory, Vol. CT-18, No. 6, pp. 670-677, Nov.
             1971.
        [22] Long L.J. and Trick T.N.: An Absolute Bound on Limit Cycles due to Roundoff
             Errors in Digital Filters, IEEE Trans, on Audio Electroacoust., Vol. AU-21,
             No. 1, pp. 27-30, Feb. 1973.
        [23] Meerkotter K.: Incremental Pseudopassivity of Wave Digital Filters, Proc.
             European Signal Processing Conf., EUSIPCO-80, pp. 27-32, Lausanne,
             Switzerland, Sept. 1980.
        [24] Mitra D. and Lawrence V.B.: Controlled Rounding Arithmetics, for Second-
             Order Direct-Form Digital Filters That Eliminate All Self-Sustained
             Oscillations, IEEE Trans, on Circuits and Systems, Vol. CAS-28, No. 9, pp.
             894-905, Sept. 1981.
        [25] Mullis C.T. and Roberts R.A.: Synthesis of Minimum Roundoff Noise Fixed
             Point Digital Filters, IEEE Trans, on Circuits and Systems, Vol. CAS-23, No.
             9, pp. 551-561, Sept. 1976.
        [26] Oppenheim A.V. and Weinstein C.J.: Effects of Finite Register Length in
             Digital Filtering and the Fast Fourier Transform, Proc. IEEE, Vol. 60, pp.
             957-976, Aug. 1972.
        [27] Proakis J.G. and Manolakis D.G.: Introduction to Digital Signal Processing,
             Macmillan, New York, 1988.
        [28] Rao B.D.: Floating Point Arithmetic and Digital Filters, IEEE Trans, on
             Signal Processing, Vol. SP-40, No. 1, pp. 85-95, Jan. 1992.
        [29] Renfors M.: Roundoff Noise in Error-Feedback State-Space Filters, Proc.
             Intern. Conf. Acoustics, Speech, and Signal Processing, ICASSP-83, Boston,
             pp. 619-622, April 1983.
        [30] Renfors M., Sikstrom B., and Wanhammar L.: LSI Implementation of Limit-
             Cycle-Free Digital Filters Using Error Feedback Techniques, Proc. European
             Conf. Signal Processing, EUSIPCO-83, Erlangen, F.R.G., pp. 107-110, Sept.
             1983.
        [31] Samueli H. and Willson Jr. A.N.: Nonperiodic Forced Overflow Oscillations in
             Digital Filters, IEEE Trans, on Circuits and Systems, Vol. CAS-30, No. 10,
             pp. 709-722, Oct. 1983.
   230   231   232   233   234   235   236   237   238   239   240