Page 193 - Decision Making Applications in Modern Power Systems
P. 193

156  Decision Making Applications in Modern Power Systems


            where
                                  z k 5 a 1 sin kω 1 T s 1 φ

                                                   1                   ð6:2Þ
            where ω 1 is the fundamental of angular frequency, φ is the fundamental of
                                                        1
            phase angle, and a 1 is the fundamental amplitude of the signal.
               The observation noise, v k , is a Gaussian white noise with zero mean and
                      2

                                                                     T
            variance, σ , and the covariance of measured errors is R k 5 Ev k v     . The
                      v                                             k
            sinusoid can be represented by using three complex state variables as
                                       x kð1Þ 5 e jω 1 T s             ð6:3Þ
                                    x kð2Þ 5 a 1 e jðkω 1 T s 1φ 1 Þ   ð6:4Þ

                                   x kð3Þ 5 a 1 e 2jðkω 1 T s 1φ 1 Þ   ð6:5Þ
               The state-space model can be formulated by using state and measurement
            equations as given in the following equations:

                              State equation x k11 5 fð x k Þ 1 Gw k   ð6:6Þ
                             Measurement equation y k 5 Hx k 1 v k     ð6:7Þ
            where
                                                     T

                                 x k 5 x kð1Þ  x kð2Þ  x kð3Þ          ð6:8Þ
               The state transition matrix can be obtained from state equation using
            Taylor series expansion as
                                       1        0     0
                                 2                       3
                             F k 5  4  x kð2Þ  x kð1Þ  0  5            ð6:9Þ
                                   2x kð3Þ =x 2  0  1=x kð1Þ
                                          kð1Þ
               The measurement matrix is given by


                                  H k 5 0  20:5i 0:5i                 ð6:10Þ
                         ^
               Frequency, f , and amplitude, ^ aðkÞ, can be estimated from state variables
                         ðkÞ
            as shown in the following equations:
                                 f ^  5  1    Imðlnð^ x kð1Þ ÞÞ       ð6:11Þ
                                  ðkÞ
                                      2πΔT
                                       ^ aðkÞ 5 j^ x kð1Þ j           ð6:12Þ



            6.2.1.2 Signal model for harmonic estimation
            Similar complex state-space model can also be used to estimate harmonic
            parameters and decaying DC components [20]. If the power signal is
   188   189   190   191   192   193   194   195   196   197   198