Page 194 - Decision Making Applications in Modern Power Systems
P. 194

Adaptive estimation and tracking of power quality disturbances Chapter | 6  157


             considered with fundamental, third, and fifth harmonics and decaying DC
             component, state-space model can be formulated using nine complex state
             variables.
                                   x k ð1Þ 5 e
                                 8         jω 1 T s   9
                                 >                    >
                                 >                    >
                                 >                    >
                                   x k ð2Þ 5 a 1 e
                                 >          jðkω 1 T s 1φ 1 Þ  >
                                 >                    >
                                 >                    >
                                 >                    >
                                 >                    >
                                   x k ð3Þ 5 a 1 e
                                 >          2jðkω 1 T s 1φ 1 Þ >
                                 >                    >
                                 >                    >
                                 >                    >
                                 >                    >
                                 >          jðk3ω 1 T s 1φ 3 Þ >
                                 >  x k ð4Þ 5 a 3 e   >
                                 >                    >
                                 <                    =
                                   x k ð5Þ 5 a 3 e 2jðk3ω 1 T s 1φ 3 Þ  ð6:13Þ
                                 >                    >
                                 >                    >
                                 >  x k ð6Þ 5 a 5 e  jðk5ω 1 T s 1φ 5 Þ >
                                 >                    >
                                 >                    >
                                 >                    >
                                 >                    >
                                   x k ð7Þ 5 a 5 e
                                 >          2jðk5ω 1 T s 1φ 5 Þ >
                                 >                    >
                                 >                    >
                                 >                    >
                                   x k ð8Þ 5 a DC e
                                 >                    >
                                 >            2αkT s  >
                                 >                    >
                                 >                    >
                                 >                    >
                                 :                    ;
                                   x k ð9Þ 5 e 2αkT s
                The corresponding state vector can be expressed as
                                                                          T
               x k 5 x k ð1Þ x k ð2Þ  x k ð3Þ x k ð4Þ x k ð5Þ  x k ð6Þ x k ð7Þ  x k ð8Þ x k ð9Þ
                                                                       ð6:14Þ
                The state transition matrix, F k , and measurement matrix, H k , can be gen-
             erated by Taylor series expansion neglecting higher order derivative terms.
                    1       0     0     0     0     0     0     0     0
                  0                                                       1
                  B                                                       C
                    x k ð2Þ  x k ð1Þ 0  0     0     0     0     0     0
                  B                                                       C
                  B                                                       C
                    2 x k ð3Þ      1
                  B                                                       C
                            0           0     0     0     0     0     0
                        2
                  B                                                       C
                  B  x k ð1Þ      x k ð1Þ                                 C
                  B                                                       C
                  B                                                       C
                  B x k ð4Þ  0    0     x k ð1Þ 0   0     0     0     0   C
                  B                                                       C
                  B                                                       C
                    2 x k ð5Þ                  1
                  B                                                       C
             F k 5  B   2   0     0     0           0     0     0     0   C
                    x k ð1Þ                   x k ð1Þ
                  B                                                       C
                  B                                                       C
                  B                                                       C
                    x k ð6Þ  0    0     0     0     x k ð1Þ 0   0     0
                  B                                                       C
                  B                                                       C
                  B  2 x k ð7Þ                             1              C
                  B         0     0     0     0     0           0     0   C
                        2
                  B                                                       C
                    x k ð1Þ                               x k ð1Þ
                  B                                                       C
                  B                                                       C
                    0       0     0     0     0     0     0
                  B                                                       C
                  @                                             x k ð9Þ x k ð8Þ A
                    0       0     0     0     0     0     0     0     e 2αT s
                                                                       ð6:15Þ

                   H k 5 0  20:5i  0:5i 2 05i 0:5i 2 0:5i 0:5i 11      ð6:16Þ
                The amplitudes and phases of the harmonics can be estimated as shown
             from Eqs. (6.17) to (6.20).
   189   190   191   192   193   194   195   196   197   198   199