Page 197 - Design and Operation of Heat Exchangers and their Networks
P. 197

Thermal design of evaporators and condensers  185


              and the mass transfer coefficient can be evaluated by the Lewis relationship

                                              2=3
                                      β ¼ αLe   = ρc p                  (4.231)
              with the Lewis number

                                      Le ¼ Sc=Pr ¼ a=D                  (4.232)
                 The similar method can be applied to the liquid region, which yields

                                              _ n i, int =_n int  x i
                                 _ n int ¼ β c f ln                     (4.233)
                                        f
                                             _ n i, int =_n int  x i, int
                 Newton’s method can be used to solve Eqs. (4.229), (4.233) for
              unknown _n int and _n i, int . Let

                                                                        (4.234)
                                        φ ¼ _n 1, int =_n int
                                        φ y i, int       φ x 1
                            f φðÞ ¼ β c v ln     β c f ln               (4.235)
                                                   f
                                   v
                                          φ y i         φ x 1, int
              φ 0 ¼1.01 and φ 1 ¼1.0. For any iteration point φ k , the next iteration point
              will be
                                                  φ  φ
                               φ    ¼ φ  f φðÞ     k   k 1              (4.236)
                                k +1   k     k  f φðÞ f φ k 1 Þ
                                                       ð
                                                  k
                 With the calculated molar flow rates of the components, the latent heat
              flux at the liquid-vapor interface can be expressed as
                                 !
                        X
                                         ð
                  _ q ¼    _ n j, int M j ½ h v,mix t int , p, y int Þ h f ,mix t int , p, x int ފ  (4.237)
                                                         ð
                                e
                   l
                         j
                 The heat flux in the vapor region is given by
                                   X                        dt
                              _ q  ¼       e     ð                      (4.238)
                               s,v     _ n j, int M j c p,v, j t  t int Þ + λ v dη
                                    j
                                                                        (4.239)
                                        η ¼ 0 : t ¼ t int
                                                                        (4.240)
                                        η ¼ δ v : t ¼ t v
              The solution of Eqs. (4.238), (4.239) can be expressed as
                                         δ v _q s,v
                                 ∗
                                t ¼ t int +     1 e  Co v η=δ v         (4.241)
                                         λ v Co v
   192   193   194   195   196   197   198   199   200   201   202