Page 249 - Design and Operation of Heat Exchangers and their Networks
P. 249

Optimal design of heat exchanger networks  239



                    Cooler H3CU:

                                        00
                       Q H3CU ¼ _ C H3 t  t H3  ¼ 6  376:60 360Þ ¼ 99:6kW
                                    00
                                               ð
                                    3

                                    t  t 00 CU    t 00 H3   t CU
                                                   0
                                     00
                                    3
                        Δt m,H3CU ¼
                                      00  00    00  0
                                              ð
                                  ln t  tð½  Þ  t   t  ފ
                                      3  CU     H3  CU
                                   ð 376:60 320Þ  360 300Þ
                                                 ð
                                ¼                           ¼ 58:28 K
                                  ln 376:60 320Þ= 360 300ފ
                                    ð
                                    ½
                                                 ð
                     A H3CU ¼ Q H3CU = kΔt m,H3CU Þ ¼ 99:6= 1 58:28Þ ¼ 1:709 m 2
                                                    ð
                                   ð
                                C U,H3CU ¼ 10Q H3CU ¼ 996$=yr,
                                C E,H3CU ¼ 1200A 0:6  ¼ 1655$=yr
                                              H3CU
                    Total annual cost:
                           6
                          X       0:6
                    TAC ¼    1200A   + C E,H3CU + C U,H3CU + C E,HUC1 + C U,HUC1
                                  i
                          i¼1
                        ¼ 570,764$=yr
              6.2 Mathematical model and calculation methods for
              sizing heat exchanger networks
              Design of heat exchanger networks refers to two aspects: parameter
              design (sizing of a heat exchanger network) and structure design (synthe-
              sis of a heat exchanger network). Unlike the rating problem, no general
              explicit solutions are available for sizing heat exchanger networks. For a
              given network configuration, there might be infinitely many solutions if
              there is no restriction on the use of the hot and cold utilities. As a result,
              sizing a heat exchanger network becomes a constrained optimization
              problem.


              6.2.1 Matrix formulation
              In the matrix formulation, we express the task of sizing a heat exchanger
              network as follows:
                                                   0
                 For given supply temperatures of N process streams entering the
              network
                                                      T
                                      0    0  0    0
                                         ½
                                     T ¼ t t ⋯ t Š
                                                   N
                                          1
                                             2
                                                     0
   244   245   246   247   248   249   250   251   252   253   254