Page 256 - Design and Operation of Heat Exchangers and their Networks
P. 256

Optimal design of heat exchanger networks  245


              hot and cold utility costs
                 C U,HU,k QðÞ k ¼ 1, 2, …N HU Þ,  C U,CU,l QðÞ l ¼ 1, 2, …N CU Þ
                             ð
                                                            ð
              and the network configuration (excluding the heaters and coolers) together
              with a set of additional equality and inequality constraints g(x) and h(x)
              determine the heat loads and thermal capacity rates of process heat
              exchangers
                                    _     _
                              Q E, j , C E,h, j , C E,c, j ð j ¼ 1, 2, …N E Þ
              so that the objective function f (x) (usually the total annual cost) reaches the
              minimum.
                 As an example, we take the total annual cost as the objective function

                                N E
                               X

              minf xðÞ ¼ TAC ¼    C E A E, j
                                j¼1
                         N
                        X
                      +    min C E,HU,k A HU,ik Þ + C U,HU,k Q HU,i Þ; k ¼ 1, 2, …, N HU g
                                       ð
                               f
                                                        ð
                        i¼1
                         N
                        X
                      +    min C E,CU,l A CU,il Þ + C U,CU,l Q CU,i Þ; l ¼ 1, 2, …, N CU g
                                                      ð
                                      ð
                               f
                        i¼1
                                                                         (6.38)
              in which

                                              _
                                                      00
                                Q HU,i ¼ max C i t 00   t ,0             (6.39)
                                                 lb,i  i
                                              _

                                Q CU,i ¼ max C i t  t  00  ,0            (6.40)
                                                 00
                                                 i   ub,i
                                            f
                                        max Q E,k ,  φQ E,k g
                           A E,k ¼                                       (6.41)
                                            f
                                 F E,k k E,k max Δt m,E,k ,  Δt m,E,k =φg
                                         f
                                     max Q HU,i ,  φQ HU,i g
                    A HU,ik ¼                                            (6.42)
                            F HU,ik k HU,ik max Δt m,HU,ik ,  Δt m,HU,ik =φg
                                          f
                                         f
                                     max Q CU,i ,  φQ CU,i g
                     A CU,il ¼                                           (6.43)
                            F CU,il k CU,il max Δt m,CU,il ,  Δt m,CU,il =φg
                                          f

                     8
                         t  0   t 00    t 00   t 0
                     >
                     >    h,E,k  c,E,k  h,E,k  c,E,k
                     >                                0     00    00    0
                     <                            i,  t    t     t     t    > 0
                         h                            h,E,k  c,E,k  h,E,k  c,E,k
              Δt m,E,k  ¼  ln  t 0   t 00  = t 00   t 0
                     >     h,E,k  c,E,k  h,E,k  c,E,k
                     >
                     >
                     :                                0     00    00    0
                        1,                            t    t     t     t      0
                                                      h,E,k  c,E,k  h,E,k  c,E,k
                                                                          (6.44)
   251   252   253   254   255   256   257   258   259   260   261