Page 446 - Design and Operation of Heat Exchangers and their Networks
P. 446

428   Design and operation of heat exchangers and their networks


          Luo, X., 1997. Das axiale Dispersionsmodell f€ur Kreuzstromw€arme€ubertrager (Dissertation).
             University of the Federal Armed Forces Hamburg, Germany.
          Luo, X., 1998. Das axiale Dispersionsmodell f€ur Kreuzstromw€arme€ubertrager. Fortschritt-
             Berichte VDI, Reihe 19, Nr. 109VDI Verlag, D€usseldorf.
          Luo, X., Roetzel, W., 1995. Extended axial dispersion model for transient analysis of heat
             exchangers. In: Proceedings of the 4th UK National Conference on Heat Transfer,
             26-27 September 1995. IMechE, London, pp. 411–416.
          Luo, X., Roetzel, W., 2000. Theoretical study on the single-blow testing technique consid-
             ering lateral heat resistance of fins in plate-fin heat exchangers. In: Wang, B.X. (Ed.),
             Heat Transfer Science and Technology. Higher Education Press, Beijing, pp. 691–696.
          Luo, X., Roetzel, W., 2001. The single-blow transient testing technique for plate-fin heat
             exchangers. Int. J. Heat Mass Transf. 44 (19), 3745–3753.
          Luo, X., Roetzel, W., L€udersen, U., 2001. The single-blow transient testing technique con-
             sidering longitudinal core conduction and fluid dispersion. Int. J. Heat Mass Transf.
             44, 121–129.
          Mullisen, R.S., Loehrke, R.I., 1986. A transient heat exchanger evaluation test for arbitrary
             fluid inlet temperature variation and longitudinal core conduction. J. Heat Transf.
             108, 370–376.
          Na Ranong, C., Roetzel, W., 2012. Unity Mach number axial dispersion model for heat
             exchanger design. J. Phys. Conf. Ser. 395, 012052.
          Nusselt, W., 1927. Die Theorie des Winderhitzers. Z. Ver. Dtsch. Ing. 71 (3), 85–91.
          Roetzel, W., Na Ranong, C., 1999. Consideration of maldistribution in heat exchangers
             using the hyperbolic dispersion model. Chem. Eng. Process. 38, 675–681. Also in: Pro-
             gress in Engineering Heat Transfer, Grochal B, Mikielewicz J, Sunden B (eds.), Institute
             of Fluid-Flow Machinery Publishers, 569-580.
          Roetzel, W., Na Ranong, C., 2002. On the application of the Wilson plot technique.
             In: Celata, G.P., Thonon, B., Bontemps, A., Kandlikar, S. (Eds.), Compact Heat
             Exchangers (A Festschrift on the 60th Birthday of Ramesh K. Shah). Edizioni
             ETS, Pisa, pp. 151–156. Also in: International Journal of Heat and Technology,
             21(2):125-130, 2003.
          Roetzel, W., Na Ranong, C., 2003. On the application of the Wilson plot technique. Heat
             Technol. 21 (2), 125–130.
          Roetzel, W., Na Ranong, C., 2014. Evaluation of residence time measurements on heat
             exchangers for the determination of dispersive Peclet numbers. Arch. Thermodyn.
             35 (2), 103–115.
          Roetzel, W., Na Ranong, C., 2015. Evaluation method of single blow experiment for the
             determination of heat transfer coefficient and dispersive Peclet number. Arch. Thermo-
             dyn. 36 (4), 3–24.
          Roetzel, W., Na Ranong, C., 2018. Evaluation of temperature oscillation experiment for the
             determination of heat transfer coefficient and dispersive Peclet number. Arch. Thermo-
             dyn. 39 (1), 91–110.
          Roetzel, W., Luo, X., Xuan, Y., 1993. Measurement of heat transfer coefficient and axial
             dispersion coefficient using temperature oscillations. Exp. Thermal Fluid Sci.
             7, 345–353.
          Roetzel, W., Na Ranong, C., Fieg, G., 2011. New axial dispersion model for heat exchanger
             design. Heat Mass Transf. 47, 1009–1017.
          Rose, J.W., 2004. Heat-transfer coefficients, Wilson plots and accuracy of thermal measure-
             ments. Exp. Thermal Fluid Sci. 28 (2–3), 77–86.
          Schumann, T.E.W., 1929. Heat transfer: a liquid flowing through a porous prism. J. Frankl.
             Inst. 208 (3), 405–416.
   441   442   443   444   445   446   447   448   449   450   451