Page 557 - Design and Operation of Heat Exchangers and their Networks
P. 557
540 Appendix
T_h_out = T_h_in;
T_c_out = T_c_in;
p_h_out = p_h_in;
p_c_out = p_c_in;
for iter = 1 : 1000
T_h_m = (T_h_in + T_h_out) / 2;
p_h_m = (p_h_in + p_h_out) / 2;
[rho_h, cp_h, lambda_h, mu_h] = ...
refpropm('DCLV','T', T_h_m, 'P', p_h_m, ...
'nitrogen', 'oxygen', 'water', 'CO2', c_mass);
Pr_h = mu_h ∗ cp_h / lambda_h;
Re_2_h = G_2_h ∗ dh_2_h / mu_h;
Re_2_h_cr = 257 ∗ (l_s_h / s_fs_h) ^ 1.23 ...
∗ (delta_f_h / l_s_h) ^ 0.58 ∗ dh_2_h ...
/ (delta_f_h + 1.328 ∗ sqrt(l_s_h ∗ dh_2_h / Re_2_h));
gamma_h = (Re_2_h - Re_2_h_cr) / 1000;
f_h_l = 8.12 / (Re_2_h ^ 0.74 ∗ (l_s_h / dh_2_h) ^ 0.41 ...
∗ (s_fs_h / h_fs_h) ^ 0.02);
f_h_cr_l = 8.12 / (Re_2_h_cr ^ 0.74 ∗ (l_s_h / dh_2_h) ^ 0.41 ...
∗ (s_fs_h / h_fs_h) ^ 0.02);
f_h_cr_t = 1.12 / ((Re_2_h_cr + 1000) ^ 0.36 ...
∗ (l_s_h / dh_2_h) ^ 0.65 ∗ (delta_f_h / dh_2_h) ^ 0.17);
f_h_t = 1.12 / ((Re_2_h) ^ 0.36 ...
∗ (l_s_h / dh_2_h) ^ 0.65 ∗ (delta_f_h / dh_2_h) ^ 0.17);
j_h_l = 0.53 / (Re_2_h ^ 0.5 ∗ (l_s_h / dh_2_h) ^ 0.15 ...
∗ (s_fs_h / h_fs_h) ^ 0.14);
j_h_cr_l = 0.53 / (Re_2_h_cr ^ 0.5 ∗ (l_s_h / dh_2_h) ^ 0.15 ...
∗ (s_fs_h / h_fs_h) ^ 0.14);
j_h_cr_t = 0.21 / ((Re_2_h_cr + 1000) ^ 0.4 ...
∗ (l_s_h / dh_2_h) ^ 0.24 ∗ (delta_f_h / dh_2_h) ^ 0.02);
j_h_t = 0.21 / ((Re_2_h + 1000) ^ 0.4 ...
∗ (l_s_h / dh_2_h) ^ 0.24 ∗ (delta_f_h / dh_2_h) ^ 0.02);
if (Re_2_h <= Re_2_h_cr)
f_h = f_h_l;
j_h = j_h_l;
elseif (Re_2_h >= Re_2_h_cr + 1000)
f_h = f_h_t;
j_h = j_h_t;

