Page 559 - Design and Operation of Heat Exchangers and their Networks
P. 559
542 Appendix
else
f_c = (1 - gamma_c) ∗ f_c_cr_l + gamma_c ∗ f_c_cr_t;
j_c = (1 - gamma_c) ∗ j_c_cr_l + gamma_c ∗ j_c_cr_t;
end
alpha_c = j_c ∗ cp_c ∗ G_2_c / Pr_c ^ (2 / 3);
[rho_h_out, mu_h_out] = ...
refpropm('DV','T', T_h_out, 'P', p_h_out, ...
'nitrogen', 'oxygen', 'water', 'CO2', c_mass);
Re_1_h_out = G_1_h ∗ dh_1_h / mu_h_out;
s = log(Re_1_h_out);
Ke_h = 1 - sigma_h ^ 2- 2 ∗ sigma_h ...
∗ (((19.68 / s + 0.6714) / s + 0.1813) / s + 1 - sigma_h) ...
/ (1 - (204.9 / Re_1_h_out + 0.1216) ∗ (1 - sigma_h ^ 0.208) ...
∗ (1 - sigma_h));
dp_out_h = G_1_h ^ 2/2/ rho_h_out ∗ (Ke_h - 1 + sigma_h ^ 2);
dp_f_h = 2 ∗ f_h ∗ G_2_h ^ 2 ∗ L_h / rho_h / dh_2_h;
dp_a_h = G_1_h ^ 2 ∗ (1 / rho_h_out - 1 / rho_h_in);
dp_h = dp_in_h + dp_f_h + dp_a_h + dp_out_h; % Pa
p_h_out = p_h_in - dp_h / 1000; % kPa
dp_penalty_h = max(p_min - p_h_out, 0);
if (p_h_out < p_min)
p_h_out = p_min;
end
[rho_c_out, mu_c_out] = refpropm('DV','T', T_c_out, ...
'P', p_c_out, 'air');
Re_1_c_out = G_1_c ∗ dh_1_c / mu_c_out;
s = log(Re_1_c_out);
Ke_c = 1 - sigma_c ^ 2- 2 ∗ sigma_c ...
∗ (((19.68/s+ 0.6714) / s + 0.1813) / s+1- sigma_c) ...
/ (1 - (204.9 / Re_1_c_out + 0.1216) ∗ (1 - sigma_c ^ 0.208) ...
∗ (1 - sigma_c));
dp_out_c = G_1_c ^ 2/2/ rho_c_out ∗ (Ke_c - 1 + sigma_c ^ 2);
dp_f_c = 2 ∗ f_c ∗ G_2_c ^ 2 ∗ L_c / rho_c / dh_2_c;
dp_a_c = G_1_c ^ 2 ∗ (1 / rho_c_out - 1 / rho_c_in);
dp_c = dp_in_c + dp_f_c + dp_a_c + dp_out_c; % Pa
p_c_out = p_c_in - dp_c / 1000; % kPa
dp_penalty_c = max(p_min - p_c_out, 0);

