Page 563 - Design and Operation of Heat Exchangers and their Networks
P. 563

546   Appendix


          % supply and target temperature and thermal capacity rates
          N_h = 2;
          th_in  = [175, 125];
          th_out = [ 45,  65];
          C_h   = [ 10,  40];
          N_c = 2;
          tc_in  = [ 20,  40];
          tc_out = [155, 112];
          C_c   = [ 20,  15];
          tHU_in = 180;
          tHU_out = 179;
          tCU_in = 15;
          tCU_out = 25;
          % equipment cost function: C_E = C_E_a + C_E_b ∗ A  ^  C_E_c (A in m2)
          C_E_a = 0;
          C_E_b = 1200;
          C_E_c = 0.57;
          % utility cost functions: C_U_HU = C_U_H ∗ Q, C_U_CU = C_U_C ∗ Q
          C_U_H = 110;
          C_U_C = 10;
          % heat transfer coefficients of H1, H2, C1, C2, HU, CU
          alpha = [2.615, 1.333, 0.917, 0.166, 5, 2.5];
          % schifted cold stream temperatures
          tc_s_in = zeros(2, 1);
          tc_s_out = zeros(2, 1);
          for i=1: 1:N_c
                tc_s_in(i) = tc_in(i) + dtm;
                tc_s_out(i) = tc_out(i) + dtm;
          end

          % temperature levels and sub-networks
          t = zeros(100, 1);
          for i=1: 1:N_h
                t(i) = th_in(i);
                t(i + N_h) = th_out(i);
          end
          for i=1: 1:N_c
                t(i + 2 ∗ N_h) = tc_s_in(i);
                t(i + 2 ∗ N_h + N_c) = tc_s_out(i);
          end
   558   559   560   561   562   563   564   565   566   567   568