Page 563 - Design and Operation of Heat Exchangers and their Networks
P. 563
546 Appendix
% supply and target temperature and thermal capacity rates
N_h = 2;
th_in = [175, 125];
th_out = [ 45, 65];
C_h = [ 10, 40];
N_c = 2;
tc_in = [ 20, 40];
tc_out = [155, 112];
C_c = [ 20, 15];
tHU_in = 180;
tHU_out = 179;
tCU_in = 15;
tCU_out = 25;
% equipment cost function: C_E = C_E_a + C_E_b ∗ A ^ C_E_c (A in m2)
C_E_a = 0;
C_E_b = 1200;
C_E_c = 0.57;
% utility cost functions: C_U_HU = C_U_H ∗ Q, C_U_CU = C_U_C ∗ Q
C_U_H = 110;
C_U_C = 10;
% heat transfer coefficients of H1, H2, C1, C2, HU, CU
alpha = [2.615, 1.333, 0.917, 0.166, 5, 2.5];
% schifted cold stream temperatures
tc_s_in = zeros(2, 1);
tc_s_out = zeros(2, 1);
for i=1: 1:N_c
tc_s_in(i) = tc_in(i) + dtm;
tc_s_out(i) = tc_out(i) + dtm;
end
% temperature levels and sub-networks
t = zeros(100, 1);
for i=1: 1:N_h
t(i) = th_in(i);
t(i + N_h) = th_out(i);
end
for i=1: 1:N_c
t(i + 2 ∗ N_h) = tc_s_in(i);
t(i + 2 ∗ N_h + N_c) = tc_s_out(i);
end

