Page 57 - Design and Operation of Heat Exchangers and their Networks
P. 57

44    Design and operation of heat exchangers and their networks


                c p,h,2 ¼ 4:201 kJ=kgK,λ h,2 ¼ 0:6703 W=mK,μ  ¼ 3:313 10  4  sPa,
                                                   h,2
               Pr h,2 ¼ 2:076
                At the first reference temperature,
                    Re h,1 ¼ G h d i =μ  ¼ 390:5 0:016=2:912 10  4  ¼ 21456
                                h,1
                                          2                       2
                f h,1 =8 ¼ 1:82lg Re h,1 Þ 1:64½  ð  Š =8 ¼ 1:82lg 21456Þ 1:64Š =8
                                               ½
                                                     ð
                     ¼ 0:003207
                                           "          #
                                                   2=3
                          ð
                    ð f h,1 =8Þ Re h,1  1000ÞPr h,1  d i          0:11
             Nu h,1 ¼                       1+         ð Pr h,1 =Pr w,1 Þ
                           p ffiffiffiffiffiffiffiffiffiffiffi  2=3
                    1+12:7   f h,1 =8 Pr   1     L
                                    h,1
                                              "             #
                                                          2=3
                0:003207  21456 1000Þ 1:815         0:016                0:11
                         ð
             ¼        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi     2=3     1+    ð 1:815=1:815Þ
               1+ 12:7 0:003207  1:815    1         2:701
             ¼ 91:01
                                                                2
                   α h,1 ¼ Nu h,1 λ h,1 =d i ¼ 91:01 0:6760=0:016 ¼ 3845 W=m K
                                         1
                        1           d i
                 k i,1 ¼   + R w,i,1 +
                       α h,1       α c d o
                                                       1
                        1             5      0:016                2
                    ¼      +2:356 10    +               ¼ 1141 W=m K
                       3845               1500 0:018
                           ð
             t h,w,1 ¼ t h,1  k i,1 t h,1  t c,1 Þ=α h,1 ¼ 96:84 1141  96:84 62:11ð  Þ=3845
                  ¼ 86:54°C
                Similarly, at the second reference temperature, we can obtain
                                                                     2
             Re h,2 ¼18,859,  f h,2 ¼0.003314,  Nu h,2 ¼87,  α h,2 ¼3645W/m K,
                          2
             k i,2 ¼1123W/m K, and t h,w,2 ¼69.48°C.
                The mean overall heat transfer coefficient is calculated by Eq. (2.89):
                              2              2                 2
                    k i,m ¼         ¼               ¼ 1132 W=m K
                         1=k i,1 +1=k i,2  1=1141 + 1=1123
                Since (kA) i ¼k i,m πd i L, the tube length can be determined as
                            ð kAÞ i         8087
                      L ¼          ¼                   ¼ 2:681 m
                         k i,m N tube πd i  1132 53 π  0:016
                With the newly calculated tube length L and wall temperatures at the tube
             inside t h,w,1 and t h,w,2 for the calculation of Pr h,w,1 and Pr h,w,2 ,we can
             recalculate the Gnielinski correlation and repeat the earlier steps. After
             several iterations, the calculation converges to L¼2.697m. The result
             shows that in this case, the common calculation method is sufficiently accurate.
                The detailed calculation can be found in the MatLab code for Example
             2.6 in the appendix.
   52   53   54   55   56   57   58   59   60   61   62