Page 53 - Design and Operation of Heat Exchangers and their Networks
P. 53

40    Design and operation of heat exchangers and their networks




             Example 2.5 Rating a parallel-flow heat exchanger
             Consider a shell-and-tube heat exchanger designed in Example 2.4.
             The cold water flows through the shell side and should be heated from
             20°Cto70°C by the hot water entering the tube at 100°C. The
             demanded heat duty is expected to be 350kW. The shell-side heat
                                                       2
             transfer coefficient can be established as 1500W/m K. The exchanger is
             arranged in the parallel flow. Determine the mass flow rate of the hot
             water so that the outlet temperature of the cold water can be maintained
             at 70°C.
             Solution
                                                               00 (0)
             At first, we assume the outlet temperature of the hot water t h ¼80°C.
             Then, we have t h,m ¼(100+80)/2¼90°C.
                Similar to the calculation procedure used in Example 2.4, we have

                 c p,h ¼ 4:206kJ=kgK,λ h ¼ 0:6728 W=mK,μ ¼ 3:142 10  4  sPa,
                                                   h
                 Pr h ¼ c p,h μ =λ h ¼ 1:964:
                          h

                              Q= c p,h t  t 00
                                     0
                                                        ð
                                                 ½
                         _ m h       h   h   350= 4:206  100 80ފ
                    G h ¼   ¼         2     ¼               2
                        A c,h   N tube πd =4    53 π  0:016 =4
                                      i
                                  2
                      ¼ 390:5kg=m s
                    Re h ¼ G h d i =μ ¼ 390:5 0:016=3:142 10  4  ¼ 19;886
                                h
                                        2                        2
                                                   ð
                  f =8 ¼ 1:82lg Re h Þ 1:64½  ð  Š =8 ¼ 1:82lg 19 886Þ 1:64Š =8
                                             ½
                     ¼ 0:003269
                                             "          #
                                                     2=3
                              ð
                         ð  f =8Þ Re h  1000ÞPr h  d i          0:11
                  Nu h ¼                      1+         ð  Pr=Pr w Þ
                              p ffiffiffiffiffiffiffi  2=3
                        1+12:7  f =8 Pr   1        L
                                      h
                           0:003269  19, 886 1000Þ 1:964
                                     ð
                         ¼        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1+ 12:7 0:003269  1:964 2=3   1
                            "             #
                                        2=3        0:11
                                  0:016      1:964
                             1+                      ¼ 88:21
                                   3:5       Pr w
                                           |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
                                               ¼1
                                                               2
                    α h ¼ Nu h λ h =d i ¼ 88:21 0:6728=0:016 ¼ 3709 W=m K
                       ð
                    d i ln d o =d i Þ  0:016  ln 0:018=0:016Þ   5  2
                                        ð
              R w,i ¼        ¼                      ¼ 2:356 10  m K=W
                       2λ w            2 40
                                   1                                   1
                    1        d i        1             5     0:016
              k i ¼   + R w +      ¼       +2:356 10   +
                   α h      α c d o    3709              1500 0:018
                           2
                ¼ 1129 W=m K
                With t c,m ¼(20+70)/2¼45°C, we get
   48   49   50   51   52   53   54   55   56   57   58