Page 51 - Design and Operation of Heat Exchangers and their Networks
P. 51

38    Design and operation of heat exchangers and their networks



                Thermal conductivity of liquid water at 1bar (Huber et al., 2012)isas
             follows:

                      4
                    X
                               a i
                 λ ¼                    ð W=mKÞ 0°C   t   110°CÞ   (2.82)
                                                ð
                                      b i
                     i¼1  ð ½  t + 273:15Þ=300Š
             with a i ¼1.663,  1.7781, 1.1567, and  0.432115 and b i ¼1.15, 3.4, 6.0,
             and 7.6, respectively.
                Dynamic viscosity of liquid water at 1bar (Pa ´tek et al., 2009)isas
             follows:
                         4
                        X         a i
                     6
               μ ¼ 10                      ð sPaÞ  20°C   t   110°CÞ (2.83)
                                                ð
                                          b i
                        i¼1  ð ½  t + 273:15Þ=300Š
             with a i ¼280.68, 511.45, 61.131, and 0.45903 and b i ¼1.9, 7.7, 19.6,
             and 40, respectively.
                With these equations, we have the necessary fluid properties at the mean
             temperature of hot water, t h,m ¼(100+80)/2¼90°C as follows:
                 c p,h ¼ 4:206kJ=kgK,λ h ¼ 0:6728 W=mK,μ ¼ 3:142 10  4  sPa,
                                                   h
                 Pr h ¼ c p,h μ =λ h ¼ 1:964:
                          h
                According to the given heat duty, we can calculate the mass velocity
             inside the tubes by

                                     0
                              Q= c p,h t  t 00
                                                        ð
                                                 ½
                         _ m h       h   h   350= 4:206  100 80ފ
                    G h ¼   ¼         2     ¼               2
                        A c,h   N tube πd =4    53 π  0:016 =4
                                      i
                                  2
                      ¼ 390:5kg=m s
                The tubeside Reynolds number is
                    Re h ¼ G h d i =μ ¼ 390:5 0:016=3:142 10  4  ¼ 19;886
                                h
                Since it is in the turbulent flow region, so we will use the Gnielinski
             correlation, Eq. (2.33), to calculate the Nusselt number and assume at
             first the correction term is equal to 1:
                                        2                        2
                                                   ð
                                             ½
                 f =8 ¼ 1:82 lg Re h Þ 1:64½  ð  Š =8 ¼ 1:82 lg 19;886Þ 1:64Š =8
                    ¼ 0:003269
                                        "          #
                                                 2=3
                         ð
                    ð f =8Þ Re h  1000ÞPr h   d i           0:11
             Nu h ¼       p ffiffiffiffiffiffiffi    2=3    1+    ð Pr h =Pr w Þ
                   1+ 12:7  f =8 Pr   1       L
                                  h
                                               "            #
                                                           2=3
               0:003269  19, 886 1000Þ 1:964        0:016               0:11
                         ð
             ¼        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi     2=3      1+    ð 1:964=Pr w Þ
                1+ 12:7 0:003269  1:964   1           L
                                               |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
             ¼ 85:84                                        ¼1
   46   47   48   49   50   51   52   53   54   55   56