Page 46 - Design and Operation of Heat Exchangers and their Networks
P. 46

Basic thermal design theory for heat exchangers  33



                 peripheral wall temperature (H1) would be reasonable. Therefore, the
                 Nusselt number is evaluated with Eq. (2.31):

                  Nu H1 ¼ 8:235

                                                               4
                                             2
                          1 2:0421γ +3:0853γ  2:4765γ +1:0578γ  0:1861γ 5
                                                      3
                       ¼ 6:326
                 which yields the heat transfer coefficient as
                       Nu H1 λ  6:326 0:02688
                                                       2
                    α ¼      ¼              ¼ 27:69 W=m K
                         d h      0:00614
                    The fin efficiency can be determined by
                                ð
                                          ð
                          m 1 sinh m 1 l f,1 Þcosh m 2 l f,2 Þ + m 2 cosh m 1 l f,1 Þsinh m 2 l f,2 Þ
                                                                 ð
                                                        ð
                 η ¼
                 f
                    m 1 l f,1 + l f,2 Þ m 1 cosh m 1 l f,1 Þcosh m 2 l f,2 Þ + m 2 sinh m 1 l f,1 Þsinh m 2 l f,2 Þ½  ð  ð  ð  ð  Š
                      ð
                                                                      (2.65)
                 in which “1” and “2” denote the first and second fin sections, respectively,
                 and the fin performance factor can be calculated with Eq. (2.59):
                                            s ffiffiffiffiffiffiffiffiffiffiffiffi
                                               α f P f
                                         m ¼
                                              λ f A c, f
                 where P f is the perimeter of the fin and A c,f is its cross-sectional area. In
                 this example,
                         r ffiffiffiffiffiffiffiffi  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                            2α      2 27:69
                                                      1
                     m 1 ¼     ¼             ¼ 9:814 m , l f,1 ¼ h fs ¼ 0:025 m
                           λ f δ f  230 0:0025
                        r ffiffiffiffiffiffi  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           α        27:69            1
                    m 2 ¼    ¼             ¼ 6:939 m , l f,2 ¼ s fs =2 ¼ 0:0035=2
                          λ f δ  230 0:0025
                      ¼ 0:00175 m
                    Substituting these values into Eq. (2.65), we get the value of the fin
                 efficiency as
                                          η ¼ 0:947
                                           f
                    The overall fin efficiency can be determined with Eq. (2.50) as

                                       A f            2h fs + s fs
                          η ¼ 1  1 ηð  f Þ  ¼ 1  1 η Þ
                                              ð
                           0
                                                   f
                                       A             2 h fs + s fs Þ
                                                      ð
                                           2 0:025 + 0:0035
                                 ð
                            ¼ 1  1 0:947Þ                  ¼ 0:9503
                                             ð
                                          2  0:025 + 0:0035Þ
                    Now, we can express the local temperature difference as
                                                                     Continued
   41   42   43   44   45   46   47   48   49   50   51