Page 64 - Design and Operation of Heat Exchangers and their Networks
P. 64

Basic thermal design theory for heat exchangers  51




                    We use Eq. (2.108) to size the counterflow heat exchanger:
                           Q   350 10 3
                    ð kAÞ ¼   ¼      ¼ 8948 W=K
                       i  Δt m,d  39:11
                    To get the heat exchanger area of tube inside A i , we shall evaluate the
                 overall heat transfer coefficient based on the area of tube inside. Using the
                 same calculation procedure for Example 2.4, we have

                                   t h,m ¼ 100 + 80ð  Þ=2 ¼ 90°C
                     c p,h ¼ 4:206 kJ=kgK,λ h ¼ 0:6728 W=mK,μ ¼ 3:142 10  4  sPa,
                                                      h
                     Pr h ¼ c p,h μ =λ h ¼ 1:964:
                             h

                                 Q= c p,h t  t  00
                                         0
                                                            ð
                                                     ½
                             _ m h      h   h    350= 4:206  100 80ފ
                       G h ¼   ¼         2     ¼               2
                            A c,h  N tube πd =4     53 π  0:016 =4
                                         i
                                     2
                          ¼ 390:5kg=m s
                        Re h ¼ G h d i =μ ¼ 390:5 0:016=3:142 10  4  ¼ 19;886
                                   h
                                            2                       2
                                                 ½
                     f =8 ¼ 1:82lg Re h Þ 1:64½  ð  Š =8 ¼ 1:82lg 19886Þ 1:64Š =8
                                                      ð
                        ¼ 0:003269
                                           "         #
                                                   2=3
                            ð
                        ð f =8Þ Re h  1000ÞPr h  d i          0:11
                 Nu h ¼                    1+         ð  Pr=Pr w Þ
                             p ffiffiffiffiffiffiffi  2=3     L
                      1+12:7  f =8 Pr   1
                                    h
                                                 "            #
                                                             2=3
                   0:003269  19, 886 1000Þ 1:964      0:016                0:11
                            ð
                                                                 ð
                 ¼       p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi         1+          1:964=Pr w Þ
                   1+12:7 0:003269  1:964 2=3  1      2:701      |fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
                                                                       ¼1
                 ¼ 88:65
                                                                 2
                        α h ¼ Nu h λ h =d i ¼ 88:65 0:6728=0:016 ¼ 3728 W=m K
                             d o ¼ d i +2δ w ¼ 0:016 + 2 0:001 ¼ 0:018 m:
                                           ð
                           ð
                        d i ln d o =d i Þ  0:016  ln 0:018=0:016Þ   5  2
                  R w,i ¼        ¼                     ¼ 2:356 10  m K=W
                           2λ w           2 40

                        ð kAÞ i  1       d i
                    L ¼          + R w +
                       N tube πd i α h  α c d o

                         8948       1            5     0:016
                    ¼                  +2:356 10   +            ¼ 2:971m
                     53 π  0:016 3728               1500 0:018
                 and
                             ð kAÞ i        8948                  2
                       k i ¼       ¼                   ¼ 1131 W=m K
                           N tube πd i L  53 π  0:016 2:971
                    According to the energy equation q¼α h (t h   t h,w )¼k i Δt d , we have
   59   60   61   62   63   64   65   66   67   68   69