Page 73 - Design and Operation of Heat Exchangers and their Networks
P. 73

60    Design and operation of heat exchangers and their networks



                             dp f      2  dp f    2  dp f
                                   ¼ ϕ        ¼ ϕ                    (2.149)
                              dz       l  dz      g  dz
                                  tp          l          g
          where the two frictional pressure drops are calculated for each of the two
          phases as if it flows alone in single-phase flow. By defining the Lockhart-
          Martinelli parameter X as the ratio of these pressure drops,
                                    s  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                        dp f    dp f
                                X ¼          =                       (2.150)
                                        dz      dz
                                             l      g
          the two-phase multiplier can be correlated as (Collier and Thome, 1994)
                                  2
                                 ϕ ¼ 1+ C=X +1=X   2                 (2.151)
                                  l
                                    2
                                   ϕ ¼ 1+ CX + X  2                  (2.152)
                                    g
          where C has the following values:
                             Liquid        Gas         C
                                                   tt
                            turbulent   turbulent ðÞ 20
                                                   vt
                             viscous    turbulent ðÞ 12
                                                   tv
                            turbulent    viscous  ðÞ 19
                             viscous     viscous  ðÞ 5
                                                   vv
             Whether the liquid pressure drop or gas pressure drop is used in
          Eq. (2.149) depends on the values of corresponding two-phase multiplier:
                                     8
                                                    2
                                     >  ϕ 2  dp f  , ϕ   ϕ 2
                                     >   l          l    g
                                     <
                             dp f           dz
                                   ¼            l                    (2.153)
                             dz      >   2  dp f    2    2
                                  tp  > ϕ       , ϕ > ϕ
                                     :   g          l    g
                                            dz
                                                g
          2.2.1.6 Frictional pressure drop in curved tubes
          A correlation for frictional pressure drop in curved tubes was proposed by
          Schmidt (1967) as
                    8
                                  0:97          0:312
                                             ð
                             ð
                      1+0:14 r=r c Þ  Re 1 0:644 r=r c Þ  ,  ð 100 < Re < Re cr Þ
                    <
                                 4
                                                                           4
          f D,c =f D,s ¼  1+2:88 10 r=r c Þ 0:62 =Re,  ð Re cr < Re < 2:2 10 Þ
                                  ð
                    :                       0:53  0:25      4               5
                      1+0:0823 1 + r=r c Þ r=r c Þ  Re  ,2 10 < Re < 1:5 10
                               ð
                                       ð
                                                                     (2.154)
   68   69   70   71   72   73   74   75   76   77   78